DOI QR코드

DOI QR Code

Effect of Stevia rebaudiana on the Bioactive Compounds from Agarwood Leaf (Aquilaria spp.) by Lactic Fermentation and Spray Drying

  • Dong, Lieu My (Faculty of Food Science and Technology, Ho Chi Minh City University of Food Industry) ;
  • Nam, Doan Trung (Faculty of Food Science and Technology, Ho Chi Minh City University of Food Industry) ;
  • Phuong, Tran Thi (Faculty of Food Science and Technology, Ho Chi Minh City University of Food Industry) ;
  • Thuy, Dang Kim (Department of Plant Cell Technology, Institute of Tropical Biology)
  • Received : 2021.01.05
  • Accepted : 2021.02.22
  • Published : 2021.06.28

Abstract

Agarwood (Aquilaria spp) has high economic value. However, essential oil production from agarwood is a time-consuming process. Additionally, agarwood leaves have not been utilized even though they contain various bioactive ingredients. In this study, agarwood leaves were fermented using Lactobacillus plantarum ATCC 8014 with or without Stevia (4, 8, and 12%; v/v). The fermented fluid was mixed with maltodextrin (15%; w/v) and subjected to spray drying (inlet temperature, 120℃; outlet temperature, 65-70℃). The contents of polyphenols, polysaccharides, saponins, and flavonoids and the viability of L. plantarum were determined. Fermentation enhanced the levels of bioactive compounds. The contents of polyphenol (69.19 ± 4.05 mg GAE/g of sample), polysaccharide (20.75 ± 0.98 mg GE/g of sample), saponin (305.23 ± 4.21 mg OAE/g of sample), and flavonoid (7.86 ± 0.72 mg QE/g of sample), and the viability of L. plantarum (8.72 ± 0.17 log CFU/ml) were markedly upregulated in the samples containing Stevia (12%; v/v). This indicated that the supplementation of Stevia during fermentation decreases the fermentation time (9 h), upregulates bioactive compound production in agarwood leaves, enhances microencapsulation during spray drying, and increases the viability of L. plantarum under simulated gastric digestion conditions.

Keywords

References

  1. Kalita P, Roy PK, Sen S. 2020. Agarwood: Medicinal side of the fragrant plant. In Herbal Medicine in India, pp. 223-236. Springer, Singapore.
  2. Batubara R, Hanum TI, Surjanto. 2018. Phytochemical and tannin content in two species of agarwood leaves from Mandailing Natal Regency North Sumatera Province. In AIP Conference Proceedings, Vol. 2049, No. 1, pp. 030009. AIP Publishing LLC.
  3. Kamonwannasit S, Nantapong N, Kumkrai P, Luecha P, Kupittayanant S, Chudapongse N. 2013. Antibacterial activity of Aquilaria crassna leaf extract against Staphylococcus epidermidis by disruption of cell wall. Annal. Clin. Microbiol. Antimicrob. 12: 20. https://doi.org/10.1186/1476-0711-12-20
  4. Manoka S, Sungthong B, Sato H, Sugiyama E, Sato VH. 2016. Hypoglycemic and antioxidant activities of the water extract of aquilaria crassna leaves in streptozotocin-nicotinamide-induced Type-2 diabetic mice. Nat. Prod. Commun. 11: 757-761.
  5. Pang SF, Lau MZ, Yusoff MM, Gimbun J. 2017. Microwave-irradiation induced fast simultaneous extraction of methoxylated and hydroxylated phenolic compounds from orthosiphon stamineus leaves. In Materials Science Forum, Vol. 890, pp. 155-158. Trans Tech Publications Ltd., Switzerland.
  6. Limon RI, Penas E, Torino MI, Martinez-Villaluenga C, Duenas M, et al. 2015. Fermentation enhances the content of bioactive compounds in kidney bean extracts. Food Chem. 172: 343-352. https://doi.org/10.1016/j.foodchem.2014.09.084
  7. Yeong YL, Pang SF, Chong SY, Gimbun J. 2018. Comparison of microwave and ultrasonic assisted extraction of kaempferol from Cassia alata. Int. J. Eng Technol. 7: 84-89.
  8. Hussain A, Bose S, Wang JH, Yadav MK, Mahajan GB, Kim H. 2016. Fermentation, a feasible strategy for enhancing bioactivity of herbal medicines. Food Res. Int. 81: 1-16. https://doi.org/10.1016/j.foodres.2015.12.026
  9. Septembre-Malaterre A, Remize F, Poucheret P. 2018. Fruits and vegetables, as a source of nutritional compounds and phytochemicals: Changes in bioactive compounds during lactic fermentation. Food Res. Int. 104: 86-99. https://doi.org/10.1016/j.foodres.2017.09.031
  10. Parvez S, Malik KA, Ah Kang S, Kim HY. 2006. Probiotics and their fermented food products are beneficial for health. J. Appl. Microbiol. 100: 1171-1185. https://doi.org/10.1111/j.1365-2672.2006.02963.x
  11. Perrier JD, Mihalov JJ, Carlson SJ. 2018. FDA regulatory approach to steviol glycosides. Food Chem. Toxicol. 122: 132-142. https://doi.org/10.1016/j.fct.2018.09.062
  12. Lopes SMS, Francisco MG, Higashi B, de Almeida RTR, Krausova G, Pilau EJ, et al. 2016. Chemical characterization and prebiotic activity of fructo-oligosaccharides from Stevia rebaudiana (Bertoni) roots and in vitro adventitious root cultures. Carbohydr. Polym. 152: 718-725. https://doi.org/10.1016/j.carbpol.2016.07.043
  13. Ozdemir T, Ozcan T. 2020. Effect of steviol glycosides as sugar substitute on the probiotic fermentation in milk gels enriched with red beetroot (Beta vulgaris L.) bioactive compounds. LWT 134: 109851. https://doi.org/10.1016/j.lwt.2020.109851
  14. Agudelo J, Cano A, Gonzalez-Martinez C, Chiralt A. 2017. Disaccharide incorporation to improve survival during storage of spray dried Lactobacillus rhamnosus in whey protein-maltodextrin carriers. J. Funct. Foods 37: 416-423. https://doi.org/10.1016/j.jff.2017.08.014
  15. de Souza MM, Santos AM, Converti A, Maciel MIS. 2020. Optimisation of umbu juice spray drying, and physicochemical, microbiological and sensory evaluation of atomised powder. J. Microencapsul. 37: 230-241. https://doi.org/10.1080/02652048.2020.1720031
  16. Yeo SK, Liong MT. 2010. Effect of prebiotics on viability and growth characteristics of probiotics in soymilk. J. Sci. Food Agric. 90: 267-275. https://doi.org/10.1002/jsfa.3808
  17. Correa-Filho LC, Lourenco MM, Moldao-Martins M, Alves VD. 2019. Microencapsulation of β-Carotene by spray drying: effect of wall material concentration and drying inlet temperature. Int. J. Food Sci. 2019: 8914852. https://doi.org/10.1155/2019/8914852
  18. Vuong QV, Hirun S, Roach PD, Bowyer MC, Phillips PA, Scarlett CJ. 2013. Effect of extraction conditions on total phenolic compounds and antioxidant activities of Carica papaya leaf aqueous extracts. J. Herb. Med. 3: 104-111. https://doi.org/10.1016/j.hermed.2013.04.004
  19. Ly NT, Tham NT, Thuy DTK, Dong LM. 2019. Extraction of bioactive component from herbal Anoectochilus formosanus hayata by microwave, ultrasound and lactic fermentation. Turkish J. Agric. Food Sci. Technol. 7: 593-597. https://doi.org/10.24925/turjaf.v7i4.593-597.2255
  20. Zhishen J, Mengcheng T, Jianming W. 1999. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 64: 555-559. https://doi.org/10.1016/S0308-8146(98)00102-2
  21. Chen Y, Xie MY, Gong XF. 2007. Microwave-assisted extraction used for the isolation of total triterpenoid saponins from Ganoderma atrum. J. Food Eng. 81: 162-170. https://doi.org/10.1016/j.jfoodeng.2006.10.018
  22. Gbassi G, Vandamme T, Ennahar S, Marchioni E. 2009. Microencapsulation of Lactobacillus plantarum spp. in an alginate matrix coated with whey proteins. Int. J. Food Microbiol. 129: 103-105. https://doi.org/10.1016/j.ijfoodmicro.2008.11.012
  23. Hur SJ, Lee SY, Kim YC, Choi I, Kim GB. 2014. Effect of fermentation on the antioxidant activity in plant-based foods. Food Chem. 160: 346-356. https://doi.org/10.1016/j.foodchem.2014.03.112
  24. Sestelo ABF, Poza M, Villa TG. 2004. β-Glucosidase activity in a Lactobacillus plantarum wine strain. World J. Microbiol. Biotechnol. 20: 633. https://doi.org/10.1023/B:WIBI.0000043195.80695.17
  25. Lee JH, Kim B, Hwang CE, Haque MA, Kim SC, Lee CS, et al. 2018. Changes in conjugated linoleic acid and isoflavone contents from fermented soymilks using Lactobacillus plantarum P1201 and screening for their digestive enzyme inhibition and antioxidant properties. J. Funct. Foods 43: 17-28. https://doi.org/10.1016/j.jff.2018.01.022
  26. Tchabo W, Ma Y, Kaptso GK, Kwaw E, Cheno RW, Xiao L, et al. 2019. Process analysis of mulberry (Morus alba) leaf extract encapsulation: Effects of spray drying conditions on bioactive encapsulated powder quality. Food Bioprocess Technol. 12: 122-146. https://doi.org/10.1007/s11947-018-2194-2
  27. Gao H, Wen JJ, Hu JL, Nie QX, Chen HH, Nie SP, et al. 2019. Momordica charantia juice with Lactobacillus plantarum fermentation: Chemical composition, antioxidant properties and aroma profile. Food Biosci. 29: 62-72. https://doi.org/10.1016/j.fbio.2019.03.007
  28. Wilkowska A, Ambroziak W, Czyzowska A, Adamiec J. 2016. Effect of microencapsulation by spray-drying and freeze-drying technique on the antioxidant properties of blueberry (Vaccinium myrtillus) juice polyphenolic compounds. Polish J. Food Nutr. Sci. 66: 11-16. https://doi.org/10.1515/pjfns-2015-0015
  29. Avila-Reyes SV, Garcia-Suarez FJ, Jimenez MT, San MartinGonzalez MF, Bello-Perez LA. 2014. Protection of L. rhamnosus by spray-drying using two prebiotics colloids to enhance the viability. Carbohydr. Polym. 102: 423-430. https://doi.org/10.1016/j.carbpol.2013.11.033
  30. Ballesteros LF, Ramirez MJ, Orrego CE, Teixeira JA, Mussatto SI. 2017. Encapsulation of antioxidant phenolic compounds extracted from spent coffee grounds by freeze-drying and spraydrying using different coating materials. Food Chem. 237: 623-631. https://doi.org/10.1016/j.foodchem.2017.05.142
  31. Cam M, Isikli MD, Yuksel E, Alasalvar H, Basyigit B. 2018. Application of pressurized water extraction and spray drying techniques to produce soluble spearmint tea. J. Food Meas. Charact. 12: 1927-1934. https://doi.org/10.1007/s11694-018-9808-2
  32. Mahdi AA, Mohammed JK, Al-Ansi W, Ghaleb AD, Al-Maqtari QA, Ma M, et al. 2020. Microencapsulation of Fingered citron extract with gum Arabic, modified starch, whey protein, and maltodextrin using spray drying. Int. J. Biol. Macromol. 152: 1125-1134. https://doi.org/10.1016/j.ijbiomac.2019.10.201
  33. Kalita D, Saikia S, Gautam G, Mukhopadhyay R, Mahanta CL. 2018. Characteristics of synbiotic spray dried powder of litchi juice with Lactobacillus plantarum and different carrier materials. LWT 87: 351-360. https://doi.org/10.1016/j.lwt.2017.08.092
  34. Sosa N, Gerbino E, Golowczyc MA, Schebor C, Gomez-Zavaglia A, Tymczyszyn EE. 2016. Effect of galacto-oligosaccharides: maltodextrin matrices on the recovery of Lactobacillus plantarum after spray-drying. Front. Microbiol. 7: 584. https://doi.org/10.3389/fmicb.2016.00584
  35. Both E, Gyorgy E, Kibedi-Szabo CZ, Tamas E, Abraham B, Miklossy I, et al. 2010. Acid and bile tolerance, adhesion to epithelial cells of probiotic microorganisms. UPB Buletin Stiintific, Series B: Chem. Mater. Sci. 72: 37-44.
  36. Ding WK, Shah NP. 2007. Acid, bile, and heat tolerance of free and microencapsulated probiotic bacteria. J. Food Sci. 72: M446-M450. https://doi.org/10.1111/j.1750-3841.2007.00565.x
  37. Andrade R, Santos E, Azoubel P, Ribeiro E. 2019. Increased survival of Lactobacillus rhamnosus ATCC 7469 in guava juices with simulated gastrointestinal conditions during refrigerated storage. Food Biosci. 32: 100470. https://doi.org/10.1016/j.fbio.2019.100470