DOI QR코드

DOI QR Code

Cardamonin Inhibited IL-1β Induced Injury by Inhibition of NLRP3 Inflammasome via Activating Nrf2/NQO-1 Signaling Pathway in Chondrocyte

  • Jiang, Jianqing (No. 4 Trauma Area, Hangzhou Fuyang District Bone Injury Hospital of Traditional Chinese Medicine) ;
  • Cai, Mingsong (No. 4 Trauma Area, Hangzhou Fuyang District Bone Injury Hospital of Traditional Chinese Medicine)
  • Received : 2021.03.31
  • Accepted : 2021.05.18
  • Published : 2021.06.28

Abstract

In this study we investigated the role and mechanism of cardamonin on IL-1β induced injury in OA. CHON-001 cells were treated with cardamonin and IL-1β and transfected with silencing nuclear factor erythroid 2-related factor 2 (siNrf2). Cell viability was detected by Cell Counting Kit-8 assay and flow cytometer assay was utilized for cell apoptosis assessment. IL-6, IL-8, TNF-α and Nrf2 mRNA expression was tested by qRT-PCR. Western blot was employed to evaluate MMP-3, MMP-13, Collagen II, Nrf2, NQO-1, NLRP3, Caspase 1 and apoptosis-associated speck-like protein containing a caspase-1 recruitment domain (ASC) protein levels. In CHON-001 cells, IL-1β suppressed cell viability and Collagen II level while promoting cell apoptosis and expression of pro-inflammatory cytokines (IL-6, IL-8, TNF-α), MMPs (MMP-3, MMP-13), NQO-1, and NLRP3 inflammasome (NLRP3, Caspase 1 and ASC), with no significant influence on Nrf2. Cardamonin reversed the effect of IL-1β on cell viability, cell apoptosis, pro-inflammatory cytokines, MMPs, Collagen II, and NLRP3 inflammasome levels. In addition, cardamonin advanced Nrf2 and NQO-1 expression of CHON-001 cells. SiNrf2 reversed the function of cardamonin on IL-1β-induced cell apoptosis and expression of pro-inflammatory cytokines, Nrf2, NQO-1, and NLRP3 inflammasome in chondrocytes. Taken together Cardamonin inhibited IL-1β induced injury by inhibition of NLRP3 inflammasome via activating Nrf2/NQO1 signaling pathway in chondrocyte.

Keywords

References

  1. Guermazi A, Roemer FW, Burstein D, Hayashi D. 2011. Why radiography should no longer be considered a surrogate outcome measure for longitudinal assessment of cartilage in knee osteoarthritis. Arthritis Res. Ther. 13: 247. https://doi.org/10.1186/ar3488
  2. Leong DJ, Sun HB. 2011. Events in articular chondrocytes with aging. Curr. Osteoporo. Rep. 9: 196-201. https://doi.org/10.1007/s11914-011-0070-3
  3. Vina ER, Kwoh CK. 2018. Epidemiology of osteoarthritis: literature update. Curr. Opin. Rheumatol. 30: 160-167. https://doi.org/10.1097/BOR.0000000000000479
  4. 2018. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet (London, England) 392: 1789-1858. https://doi.org/10.1016/s0140-6736(18)32279-7
  5. Goldring MB, Goldring SR. 2007. Osteoarthritis. J. Cell. Physiol. 213: 626-634. https://doi.org/10.1002/jcp.21258
  6. Blagojevic M, Jinks C, Jeffery A, Jordan KP. 2010. Risk factors for onset of osteoarthritis of the knee in older adults: a systematic review and meta-analysis. Osteoarthritis Cartilage 18: 24-33. https://doi.org/10.1016/j.joca.2009.08.010
  7. Xie F, Kovic B, Jin X, He X, Wang M, Silvestre C. 2016. Economic and humanistic burden of osteoarthritis: A systematic review of large sample studies. Pharmacoeconomics 34: 1087-1100. https://doi.org/10.1007/s40273-016-0424-x
  8. Glyn-Jones S, Palmer AJ, Agricola R, Price AJ, Vincent TL, Weinans H, et al. 2015. Osteoarthritis. Lancet (London, England) 386: 376-387. https://doi.org/10.1016/S0140-6736(14)60802-3
  9. Sovani S, Grogan SP. 2013. Osteoarthritis: detection, pathophysiology, and current/future treatment strategies. Orthop. Nurs. 32: 25-36; quiz 37-38. https://doi.org/10.1097/NOR.0b013e31827d96da
  10. Yu T, Qu J, Wang Y, Jin H. 2018. Ligustrazine protects chondrocyte against IL-1β induced injury by regulation of SOX9/NF-κB signaling pathway. J. Cell. Biochem. 119: 7419-7430. https://doi.org/10.1002/jcb.27051
  11. Kraus VB, Blanco FJ, Englund M, Karsdal MA, Lohmander LS. 2015. Call for standardized definitions of osteoarthritis and risk stratification for clinical trials and clinical use. Osteoarthritis Cartilage 23: 1233-1241. https://doi.org/10.1016/j.joca.2015.03.036
  12. Loeser RF. 2006. Molecular mechanisms of cartilage destruction: mechanics, inflammatory mediators, and aging collide. Arthritis Rheum. 54: 1357-1360. https://doi.org/10.1002/art.21813
  13. Chabane N, Zayed N, Afif H, Mfuna-Endam L, Benderdour M, Boileau C, et al. 2008. Histone deacetylase inhibitors suppress interleukin-1beta-induced nitric oxide and prostaglandin E2 production in human chondrocytes. Osteoarthritis Cartilage 16: 1267-1274. https://doi.org/10.1016/j.joca.2008.03.009
  14. Goldring SR, Goldring MB. 2004. The role of cytokines in cartilage matrix degeneration in osteoarthritis. Clin. Orthop. Relat. Res. (427Seppl): S27-36.
  15. Jacques C, Gosset M, Berenbaum F, Gabay C. 2006. The role of IL-1 and IL-1Ra in joint inflammation and cartilage degradation. Vitam. Horm. 74: 371-403. https://doi.org/10.1016/S0083-6729(06)74016-X
  16. Tu C, Huang X, Xiao Y, Song M, Ma Y, Yan J, et al. 2019. Schisandrin a inhibits the IL-1β induced inflammation and cartilage degradation via suppression of MAPK and NF-κB signal pathways in rat chondrocytes. Front. Pharmacol. 10: 41. https://doi.org/10.3389/fphar.2019.00041
  17. Tu C, Ma Y, Song M, Yan J, Xiao Y, Wu H. 2019. Liquiritigenin inhibits IL-1β induced inflammation and cartilage matrix degradation in rat chondrocytes. Eur. J. Pharmacol. 858: 172445. https://doi.org/10.1016/j.ejphar.2019.172445
  18. Lee SE, Shin HT, Hwang HJ, Kim JH. 2003. Antioxidant activity of extracts from Alpinia katsumadai seed. Phytother. Res. 17: 1041-1047. https://doi.org/10.1002/ptr.1291
  19. Wang Z, Xu G, Gao Y, Zhan X, Qin N, Fu S, et al. 2019. Cardamonin from a medicinal herb protects against LPS-induced septic shock by suppressing NLRP3 inflammasome. Acta Pharm. Sin. B. 9: 734-744. https://doi.org/10.1016/j.apsb.2019.02.003
  20. Goncalves LM, Valente IM, Rodrigues JA. 2014. An overview on cardamonin. J. Med. Food 17: 633-640. https://doi.org/10.1089/jmf.2013.0061
  21. Chow YL, Lee KH, Vidyadaran S, Lajis NH, Akhtar MN, Israf DA, et al. 2012. Cardamonin from Alpinia rafflesiana inhibits inflammatory responses in IFN-γ/LPS-stimulated BV2 microglia via NF-κB signalling pathway. Int. Immunopharmacol. 12: 657-665. https://doi.org/10.1016/j.intimp.2012.01.009
  22. Hatziieremia S, Gray AI, Ferro VA, Paul A, Plevin R. 2006. The effects of cardamonin on lipopolysaccharide-induced inflammatory protein production and MAP kinase and NFkappaB signalling pathways in monocytes/macrophages. Br. J. Pharmacol. 149: 188-198. https://doi.org/10.1038/sj.bjp.0706856
  23. Li YY, Huang SS, Lee MM, Deng JS, Huang GJ. 2015. Anti-inflammatory activities of cardamonin from Alpinia katsumadai through heme oxygenase-1 induction and inhibition of NF-κB and MAPK signaling pathway in the carrageenan-induced paw edema. Int. Immunopharmacol. 25: 332-339. https://doi.org/10.1016/j.intimp.2015.02.002
  24. Ren G, Sun A, Deng C, Zhang J, Wu X, Wei X, et al. 2015. The anti-inflammatory effect and potential mechanism of cardamonin in DSS-induced colitis. Am. J. Physiol. Gastrointest. Liver Physiol. 309: G517-527. https://doi.org/10.1152/ajpgi.00133.2015
  25. Wang K, Lv Q, Miao YM, Qiao SM, Dai Y, Wei ZF. 2018. Cardamonin, a natural flavone, alleviates inflammatory bowel disease by the inhibition of NLRP3 inflammasome activation via an AhR/Nrf2/NQO1 pathway. Biochem. Pharmacol. 155: 494-509. https://doi.org/10.1016/j.bcp.2018.07.039
  26. Baroja-Mazo A, Martin-Sanchez F, Gomez AI, Martinez CM, Amores-Iniesta J, Compan V, et al. 2014. The NLRP3 inflammasome is released as a particulate danger signal that amplifies the inflammatory response. Nat. Immunol. 15: 738-748. https://doi.org/10.1038/ni.2919
  27. Dong HC, Li PN, Chen CJ, Xu X, Zhang H, Liu G, et al. 2019. Sinomenine attenuates cartilage degeneration by regulating miR-223-3p/NLRP3 inflammasome signaling. Inflammation 42: 1265-1275. https://doi.org/10.1007/s10753-019-00986-3
  28. Zu Y, Mu Y, Li Q, Zhang ST, Yan HJ. 2019. Icariin alleviates osteoarthritis by inhibiting NLRP3-mediated pyroptosis. J. Orthop. Surg. Res. 14: 307. https://doi.org/10.1186/s13018-019-1307-6
  29. Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods (San Diego, Calif.) 25: 402-408. https://doi.org/10.1006/meth.2001.1262
  30. Tormalehto S, Mononen ME, Aarnio E, Arokoski JPA, Korhonen RK, Martikainen J. 2018. Health-related quality of life in relation to symptomatic and radiographic definitions of knee osteoarthritis: data from Osteoarthritis Initiative (OAI) 4-year follow-up study. Health Qual. Life Outcomes 16: 154. https://doi.org/10.1186/s12955-018-0979-7
  31. Bijlsma JW, Berenbaum F, Lafeber FP. 2011. Osteoarthritis: an update with relevance for clinical practice. Lancet (London, England). 377: 2115-2126. https://doi.org/10.1016/S0140-6736(11)60243-2
  32. Zhang Y, Tikkinen KAO, Agoritsas T, Ayeni OR, Alexander P, Imam M, et al. 2014. Patients' values and preferences of the expected efficacy of hip arthroscopy for osteoarthritis: a protocol for a multinational structured interview-based study combined with a randomised survey on the optimal amount of information to elicit preferences. BMJ Open 4: e005536. https://doi.org/10.1136/bmjopen-2014-005536
  33. Shakibaei M, John T, Seifarth C, Mobasheri A. 2007. Resveratrol inhibits IL-1 beta-induced stimulation of caspase-3 and cleavage of PARP in human articular chondrocytes in vitro. Ann. NY Acad. Sci. 1095: 554-563. https://doi.org/10.1196/annals.1397.060
  34. Kaneko S, Satoh T, Chiba J, Ju C, Inoue K, Kagawa J. 2000. Interleukin-6 and interleukin-8 levels in serum and synovial fluid of patients with osteoarthritis. Cytokines Cell. Mol. Ther. 6: 71-79. https://doi.org/10.1080/13684730050515796
  35. Malek Mahdavi A, Mahdavi R, Kolahi S. 2016. Effects of l-carnitine supplementation on serum inflammatory factors and matrix metalloproteinase enzymes in females with knee osteoarthritis: A randomized, double-blind, placebo-controlled pilot study. J. Am. Coll. Nutr. 35: 597-603. https://doi.org/10.1080/07315724.2015.1068139
  36. Haseeb A, Haqqi TM. 2013. Immunopathogenesis of osteoarthritis. Clin. Immunol. (Orlando, Fla.) 146: 185-196. https://doi.org/10.1016/j.clim.2012.12.011
  37. Xiang Q, Kang L, Wang J, Liao Z, Song Y, Zhao K, et al. 2020. CircRNA-CIDN mitigated compression loading-induced damage in human nucleus pulposus cells via miR-34a-5p/SIRT1 axis. EBioMedicine 53: 102679. https://doi.org/10.1016/j.ebiom.2020.102679
  38. He Y, Moqbel SAA, Xu L, Ran J, Ma C, Xu K, et al. 2019. Costunolide inhibits matrix metalloproteinases expression and osteoarthritis via the NF-κB and Wnt/β-catenin signaling pathways. Mol. Med. Rep. 20: 312-322.
  39. Zuo S, Zou W, Wu RM, Yang J, Fan JN, Zhao XK, et al. 2019. Icariin Alleviates IL-1β-Induced Matrix Degradation By Activating The Nrf2/ARE Pathway In Human Chondrocytes. Drug Des. Devel. Ther. 13: 3949-3961. https://doi.org/10.2147/DDDT.S203094
  40. Sykiotis GP, Bohmann D. 2008. Keap1/Nrf2 signaling regulates oxidative stress tolerance and lifespan in Drosophila. Dev. Cell 14: 76-85. https://doi.org/10.1016/j.devcel.2007.12.002
  41. Hintsala HR, Jokinen E, Haapasaari KM, Moza M, Ristimaki A, Soini Y, et al. 2016. Nrf2/Keap1 pathway and expression of oxidative stress lesions 8-hydroxy-2'-deoxyguanosine and nitrotyrosine in melanoma. Anticancer Res. 36: 1497-1506.
  42. Liu X, Zhang X, Ding Y, Zhou W, Tao L, Lu P, et al. 2017. Nuclear factor E2-related factor-2 negatively regulates NLRP3 inflammasome activity by inhibiting reactive oxygen species-induced NLRP3 priming. Antioxid Redox Signal. 26: 28-43. https://doi.org/10.1089/ars.2015.6615

Cited by

  1. Low-Molecular-Weight Collagen Peptide Ameliorates Osteoarthritis Progression through Promoting Extracellular Matrix Synthesis by Chondrocytes in a Rabbit Anterior Cruciate Ligament Transection Model vol.31, pp.10, 2021, https://doi.org/10.4014/jmb.2108.08027
  2. Urolithin A suppresses RANKL-induced osteoclastogenesis and postmenopausal osteoporosis by, suppresses inflammation and downstream NF-κB activated pyroptosis pathways vol.174, 2021, https://doi.org/10.1016/j.phrs.2021.105967