Acknowledgement
This work was supported by Yunnan Engineering Technology Research Center of Dairy Products Fermentation [2018DH003.]
References
- Cho I, Blaser MJ. 2012. The human microbiome: at the interface of health and disease. Nat. Rev. Genet. 13: 260-270. https://doi.org/10.1038/nrg3182
- Hempel S, Newberry SJ, Maher AR, Wang Z, Miles JN, Shanman R, et al. 2012. Probiotics for the prevention and treatment of antibiotic-associated diarrhea: a systematic review and meta-analysis. JAMA 307: 1959-1969. https://doi.org/10.1001/jama.2012.3507
- Goldenberg JZ, Yap C, Lytvyn L, Lo CK, Beardsley J, Mertz D, et al. 2017. Probiotics for the prevention of Clostridium difficile-associated diarrhea in adults and children. Cochrane. Database. Syst. Rev. 12: CD006095.
- Shanahan F, Quigley EM. 2014. Manipulation of the microbiota for treatment of IBS and IBD-challenges and controversies. Gastroenterology 146: 1554-1563. https://doi.org/10.1053/j.gastro.2014.01.050
- McQuade JL, Daniel CR, Helmink BA, Wargo JA. 2019. Modulating the microbiome to improve therapeutic response in cancer. Lancet. Oncol. 20: e77-e91. https://doi.org/10.1016/S1470-2045(18)30952-5
- Begley M, Gahan CG, Hill C. 2005. The interaction between bacteria and bile. FEMS. Microbiol. Rev. 29: 625-651. https://doi.org/10.1016/j.femsre.2004.09.003
- Li C, Bei T, Niu Z, Guo X, Wang M, Lu H, et al. 2019. Adhesion and colonization of the probiotic Lactobacillus rhamnosus labeled by Dsred2 in mouse gut. Curr. Microbiol. 76: 896-903. https://doi.org/10.1007/s00284-019-01706-8
- Ruiz L, Margolles A, Sanchez B. 2013. Bile resistance mechanisms in Lactobacillus and Bifidobacterium. Front. Microbiol. 4: 396. https://doi.org/10.3389/fmicb.2013.00396
- Mena B, Aryana K. 2018. Short communication: lactose enhances bile tolerance of yogurt culture bacteria. J. Dairy. Sci. 101: 1957-1959. https://doi.org/10.3168/jds.2017-13919
- Hu B, Tian F, Wang G, Zhang Q, Zhao J, Zhang H, et al. 2015. Enhancement of bile resistance in Lactobacillus plantarum strains by soy lecithin. Lett. Appl. Microbiol. 61: 13-19. https://doi.org/10.1111/lam.12418
- Vargas LA, Olson DW, Aryana KJ. 2015. Whey protein isolate improves acid and bile tolerances of Streptococcus thermophilus ST-M5 and Lactobacillus delbrueckii ssp. bulgaricus LB-12. J. Dairy Sci. 98: 2215-2221. https://doi.org/10.3168/jds.2014-8869
- Zhou Y, Wang JQ, Hu CH, Ren LQ, Wang DC, Ye BC. 2019. Enhancement of bile resistance by maltodextrin supplementation in Lactobacillus plantarum Lp-115. J. Appl. Microbiol. 126: 1551-1557. https://doi.org/10.1111/jam.14229
- Lei S, Li X, Liu L, Zheng M, Chang Q, Zhang Y, et al. 2020. Effect of lotus seed resistant starch on tolerance of mice fecal microbiota to bile salt. Int. J. Biol. Macromol. 151: 384-393. https://doi.org/10.1016/j.ijbiomac.2020.02.197
- Louis P, Hold GL, Flint HJ. 2014. The gut microbiota, bacterial metabolites and colorectal cancer. Nat. Rev. Microbiol. 12: 661-672. https://doi.org/10.1038/nrmicro3344
- Sanchez B, Champomier-Verges MC, Stuer-Lauridsen B, Ruas-Madiedo P, Anglade P, Baraige F, et al. 2007. Adaptation and response of Bifidobacterium animalis subsp. lactis to bile: a proteomic and physiological approach. Appl. Environ. Microbiol. 73: 6757-6767. https://doi.org/10.1128/AEM.00637-07
- Taranto MP, Perez-Martinez G, Font de Valdez G. 2006. Effect of bile acid on the cell membrane functionality of lactic acid bacteria for oral administration. Res. Microbiol. 157: 720-725. https://doi.org/10.1016/j.resmic.2006.04.002
- Kumar RS, Brannigan JA, Prabhune AA, Pundle AV, Dodson GG, Dodson EJ, et al. 2006. Structural and functional analysis of a conjugated bile salt hydrolase from Bifidobacterium longum reveals an evolutionary relationship with penicillin V acylase. J. Biol. Chem. 281: 32516-32525. https://doi.org/10.1074/jbc.M604172200
- Bernstein H, Payne CM, Bernstein C, Schneider J, Beard SE, Crowley CL. 1999. Activation of the promoters of genes associated with DNA damage, oxidative stress, ER stress and protein malfolding by the bile salt, deoxycholate. Toxicol. Lett. 108: 37-46. https://doi.org/10.1016/S0378-4274(99)00113-7
- Bustos AY, Saavedra L, de Valdez GF, Raya RR, Taranto MP. 2012. Relationship between bile salt hydrolase activity, changes in the internal pH and tolerance to bile acids in lactic acid bacteria. Biotechnol. Lett. 34: 1511-1518. https://doi.org/10.1007/s10529-012-0932-5
- Badely M, Sepandi M, Samadi M, Parastouei K, Taghdir M. 2019. The effect of whey protein on the components of metabolic syndrome in overweight and obese individuals; a systematic review and meta-analysis. Diabetes Metab. Syndr. 13: 3121-3131. https://doi.org/10.1016/j.dsx.2019.11.001
- Krunic TZ, Obradovic NS, Rakin MB. 2019. Application of whey protein and whey protein hydrolysate as protein based carrier for probiotic starter culture. Food Chem. 293: 74-82. https://doi.org/10.1016/j.foodchem.2019.04.062
- Hu PL, Yuan YH, Yue TL, Guo CF. 2018. A new method for the in vitro determination of the bile tolerance of potentially probiotic lactobacilli. Appl. Microbiol. Biotechnol. 102: 1903-1910. https://doi.org/10.1007/s00253-018-8742-x
- Noriega L, Gueimonde M, Sanchez B, Margolles A, de los Reyes-Gavilan CG. 2004. Effect of the adaptation to high bile salts concentrations on glycosidic activity, survival at low PH and cross-resistance to bile salts in Bifidobacterium. Int. J. Food Microbiol. 94: 79-86. https://doi.org/10.1016/j.ijfoodmicro.2004.01.003
- Yang J, Ren F, Zhang H, Jiang L, Hao Y, Luo X. 2015. Induction of regulatory dendritic cells by lactobacillus paracasei L9 prevents allergic sensitization to bovine β-lactoglobulin in mice. J. Microbiol. Biotechnol. 25: 1687-1696. https://doi.org/10.4014/jmb.1503.03022
- Wang X, Hui Y, Zhao L, Hao Y, Guo H, Ren F. 2017. Oral administration of Lactobacillus paracasei L9 attenuates PM2.5-induced enhancement of airway hyperresponsiveness and allergic airway response in murine model of asthma. PLoS One 12: e0171721. https://doi.org/10.1371/journal.pone.0171721
- Fuochi V, Petronio GP, Lissandrello E, Furneri PM. 2015. Evaluation of resistance to low pH and bile salts of human Lactobacillus spp. isolates. Int. J. Immunopathol. Pharmacol. 28: 426-433. https://doi.org/10.1177/0394632015590948
- Bi J, Liu S, Du G, Chen J. 2016. Bile salt tolerance of Lactococcus lactis is enhanced by expression of bile salt hydrolase thereby producing less bile acid in the cells. Biotechnol. Lett. 38: 659-665. https://doi.org/10.1007/s10529-015-2018-7
- Cho SK, Lee SJ, Shin SY, Moon JS, Li L, Joo W, et al. 2015. Development of bile salt-resistant Leuconostoc citreum by expression of bile salt hydrolase gene. J. Microbiol. Biotechnol. 25: 2100-2105. https://doi.org/10.4014/jmb.1505.05072
- Feng K, Huang RM, Wu RQ, Wei YS, Zong MH, Linhardt RJ, et al. 2020. A novel route for double-layered encapsulation of probiotics with improved viability under adverse conditions. Food. Chem. 310: 125977. https://doi.org/10.1016/j.foodchem.2019.125977
- Ross RP, Desmond C, Fitzgerald GF, Stanton C. 2005. Overcoming the technological hurdles in the development of probiotic foods. J. Appl. Microbiol. 98: 1410-1417. https://doi.org/10.1111/j.1365-2672.2005.02654.x
- Jones BV, Begley M, Hill C, Gahan CG, Marchesi JR. 2008. Functional and comparative metagenomic analysis of bile salt hydrolase activity in the human gut microbiome. Proc. Natl. Acad. Sci. USA 105:13580-13585. https://doi.org/10.1073/pnas.0804437105
- Hasturk O, Jordan KE, Choi J, Kaplan DL. 2020. Enzymatically crosslinked silk and silk-gelatin hydrogels with tunable gelation kinetics, mechanical properties and bioactivity for cell culture and encapsulation. Biomaterials 232: 119720. https://doi.org/10.1016/j.biomaterials.2019.119720
- Asgari S, Pourjavadi A, Licht TR, Boisen A, Ajalloueian F. 2020. Polymeric carriers for enhanced delivery of probiotics. Adv. Drug. Deliv. Rev. 161-162: 1-21. https://doi.org/10.1016/j.addr.2020.07.014
- Sugano M, Goto S, Yamada Y, Yoshida K, Hashimoto Y, Matsuo T, et al. 1990. Cholesterol-lowering activity of various undigested fractions of soybean protein in rats. J. Nutr. 120: 977-985. https://doi.org/10.1093/jn/120.9.977
- Yasuda E, Tateno H, Hirabayashi J, Iino T, Sako T. 2011. Lectin microarray reveals binding profiles of Lactobacillus casei strains in a comprehensive analysis of bacterial cell wall polysaccharides. Appl. Environ. Microbiol. 77: 4539-46. https://doi.org/10.1128/AEM.00240-11