DOI QR코드

DOI QR Code

Neuroprotective Effect of Epalrestat on Hydrogen Peroxide-Induced Neurodegeneration in SH-SY5Y Cellular Model

  • Received : 2021.01.04
  • Accepted : 2021.04.05
  • Published : 2021.06.28

Abstract

Epalrestat (EPS) is a brain penetrant aldose reductase inhibitor, an approved drug currently used for the treatment of diabetic neuropathy. At near-plasma concentration, EPS induces glutathione biosynthesis, which in turn reduces oxidative stress in the neuronal cells. In this study, we found that EPS reduces neurodegeneration by inhibiting reactive oxygen species (ROS)-induced oxidative injury, mitochondrial membrane damage, apoptosis and tauopathy. EPS treatment up to 50 µM did not show any toxic effect on SH-SY5Y cell line (neuroblastoma cells). However, we observed toxic effect at a concentration of 100 µM and above. At 50 µM concentration, EPS showed better antioxidant activity against H2O2 (100 µM)-induced cytotoxicity, ROS formation and mitochondrial membrane damage in retinoic acid-differentiated SH-SY5Y cell line. Furthermore, our study revealed that 50 µM of EPS concentration reduced the glycogen synthase kinase-3 β (GSK3-β) expression and total tau protein level in H2O2 (100 µM)-treated cells. Findings from this study confirms the therapeutic efficacy of EPS on regulating Alzheimer's disease (AD) by regulating GSK3-β and total tau proteins phosphorylation, which helped to restore the cellular viability. This process could also reduce toxic fibrillary tangle formation and disease progression of AD. Therefore, it is our view that an optimal concentration of EPS therapy could decrease AD pathology by reducing tau phosphorylation through regulating the expression level of GSK3-β.

Keywords

Acknowledgement

We thank the Department of Biotechnology, Periyar University, Salem for providing infrastructure facilities for carrying out this research work.

References

  1. Wobst HJ, Sharma A, Diamond MI, Wanker EE, Bieschke J. 2015. The green tea polyphenol (-)-epigallocatechin gallate prevents the aggregation of tau protein into toxic oligomers at substoichiometric ratios. FEBS Lett. 589: 77-83. https://doi.org/10.1016/j.febslet.2014.11.026
  2. Ali T, Kim T, Rehman SU, Khan MS, Amin FU, Khan M, et al. 2018. Natural dietary supplementation of anthocyanins via PI3K/Akt/Nrf2/HO-1 pathways mitigate oxidative stress, neurodegeneration, and memory impairment in a mouse model of Alzheimer's disease. Mol. Neurobiol. 55: 6076-6093. https://doi.org/10.1007/s12035-017-0798-6
  3. Zhang L, Yu H, Sun Y, Lin X, Chen B, Tan C, et al. 2007. Protective effects of salidroside on hydrogen peroxide-induced apoptosis in SH-SY5Y human neuroblastoma cells. Eur. J. Pharmacol. 564: 18-25. https://doi.org/10.1016/j.ejphar.2007.01.089
  4. Hu Y, Zhou KY, Wang ZJ, Lu Y, Yin M. 2017. N-stearoyl-l-Tyrosine inhibits the cell senescence and apoptosis induced by H2O2 in HEK293/Tau cells via the CB2 receptor. Chem. Biol. Interact. 272: 135-144. https://doi.org/10.1016/j.cbi.2017.05.009
  5. Paik S, Somvanshi RK, Kumar U. 2019. Somatostatin-mediated changes in microtubule-associated proteins and retinoic acid-induced neurite outgrowth in SH-SY5Y cells. J. Mol. Neurosci. 68: 120-134. https://doi.org/10.1007/s12031-019-01291-2
  6. Sanchez-Reus MI, Peinado II, Molina-Jimenez MF, Benedi J. 2005. Fraxetin prevents rotenone-induced apoptosis by induction of endogenous glutathione in human neuroblastoma cells. Neurosci. Res. 53: 48-56. https://doi.org/10.1016/j.neures.2005.05.009
  7. Anantharam V, Kaul S, Song C, Kanthasamy A, Kanthasamy AG. 2007. Pharmacological inhibition of neuronal NADPH oxidase protects against 1-methyl-4-phenylpyridinium (MPP+)-induced oxidative stress and apoptosis in mesencephalic dopaminergic neuronal cells. Neurotoxicology 28: 988-997. https://doi.org/10.1016/j.neuro.2007.08.008
  8. Humpel C. 2011. Chronic mild cerebrovascular dysfunction as a cause for Alzheimer's disease?. Experimental gerontology. 46: 225-232. https://doi.org/10.1016/j.exger.2010.11.032
  9. Sato K, Yama K, Murao Y, Tatsunami R, Tampo Y. 2014. Epalrestat increases intracellular glutathione levels in Schwann cells through transcription regulation. Redox Biol. 2: 15-21. https://doi.org/10.1016/j.redox.2013.11.003
  10. Wang X, Yu F, Zheng WQ. 2019. Aldose reductase inhibitor Epalrestat alleviates high glucose-induced cardiomyocyte apoptosis via ROS. Eur. Rev. Med. Pharmacol. Sci. 23: 294-303.
  11. Yama K, Sato K, Murao Y, Tatsunami R, Tampo Y. 2016. Epalrestat upregulates heme oxygenase-1, superoxide dismutase, and catalase in cells of the nervous system. Biol. Pharm. Bull. 39: 1523-1530. https://doi.org/10.1248/bpb.b16-00332
  12. Arvanitakis Z, Wilson RS, Bienias JL, Evans DA, Bennett DA. 2004. Diabetes mellitus and risk of alzheimer disease and decline in cognitive function. Arch. Neurol. 61: 661-666. https://doi.org/10.1001/archneur.61.5.661
  13. Ascher-Svanum H, Chen YF, Hake A, Kahle-Wrobleski K, Schuster D, Kendall D, et al. 2015. Cognitive and functional decline in patients with mild Alzheimer dementia with or without comorbid diabetes. Clin. Ther. 37: 1195-1205. https://doi.org/10.1016/j.clinthera.2015.01.002
  14. Jamsa A, Hasslund K, Cowburn RF, Backstrom A, Vasange M. 2004. The retinoic acid and brain-derived neurotrophic factor differentiated SH-SY5Y cell line as a model for Alzheimer's disease-like tau phosphorylation. Biochem. Biophy. Res. Commun. 319: 993- https://doi.org/10.1016/j.bbrc.2004.05.075
  15. Mosmann T. 1983. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65: 55-63. https://doi.org/10.1016/0022-1759(83)90303-4
  16. Halliwell B, Whiteman M. 2004. Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean?. Br. J. Pharmacol. 142: 231-255. https://doi.org/10.1038/sj.bjp.0705776
  17. Scaduto Jr RC, Grotyohann LW. 1999. Measurement of mitochondrial membrane potential using fluorescent rhodamine derivatives. Biophys. J. 76: 469-477. https://doi.org/10.1016/S0006-3495(99)77214-0
  18. Kasibhatla S, Amarante-Mendes GP, Finucane D, Brunner T, Bossy-Wetzel E, Green DR. 2006. Acridine orange/ethidium bromide (AO/EB) staining to detect apoptosis. CSH Protoc. 2006: 4493.
  19. Kapuscinski J. 1995. DAPI: a DNA-specific fluorescent probe. Biotech. Histochem. 70: 220-233. https://doi.org/10.3109/10520299509108199
  20. Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  21. Suzuki K, Tanaka S, Yanagi K, Iijima T, Niitani M, Coletta C, et al. 2014. Epalrestat induces cell proliferation and migration in endothelial cells via mTOR activation through PI3/Akt signaling. Diabetology International 5: 105-111. https://doi.org/10.1007/s13340-013-0138-7
  22. Jaiswal S, Mishra S, Torgal SS, Shengule S. 2018. Neuroprotective effect of epalrestat mediated through oxidative stress markers, cytokines and TAU protein levels in diabetic rats. Life Sci. 207: 364-371. https://doi.org/10.1016/j.lfs.2018.06.021
  23. Higashi M, Kolla V, Iyer R, Naraparaju K, Zhuang T, Kolla S, et al. 2015. Retinoic acid-induced CHD5 upregulation and neuronal differentiation of neuroblastoma. Mol. Cancer 14: 1-10. https://doi.org/10.1186/1476-4598-14-1
  24. Kim S, Lim J, Bang Y, Moon J, Kwon MS, Hong JT, et al. 2018. Alpha-Synuclein Suppresses retinoic acid-induced neuronal differentiation by targeting the glycogen synthase kinase-3β/β-catenin signaling pathway. Mol. Neurobiol. 55: 1607-1619. https://doi.org/10.1007/s12035-016-0370-9
  25. Kunzler A, Kolling EA, da Silva-Jr JD, Gasparotto J, de Bittencourt Pasquali MA, Moreira JCF, et al. 2017. Retinol (vitamin A) increases α-synuclein, β-amyloid peptide, tau phosphorylation and RAGE content in human SH-SY5Y neuronal cell line. Neurochem. Res. 42: 2788-2797. https://doi.org/10.1007/s11064-017-2292-y
  26. Yama K, Sato K, Abe N, Murao Y, Tatsunami R, Tampo Y. 2015. Epalrestat increases glutathione, thioredoxin, and heme oxygenase1 by stimulating Nrf2 pathway in endothelial cells. Redox Biol. 4: 87-96. https://doi.org/10.1016/j.redox.2014.12.002
  27. Kuwana T. 2018. The role of Mitochondrial Outer Membrane Permeabilization (MOMP) in apoptosis: Studying Bax pores by cryo-electron microscopy. In Advances in biomembranes and lipid self-assembly. Academic Press 27: 39-62. https://doi.org/10.1016/bs.abl.2017.12.002
  28. Mallet N, Le Moine C, Charpier S, Gonon F. 2005. Feedforward inhibition of projection neurons by fast-spiking GABA interneurons in the rat striatum in vivo. J. Neurosci. 25: 3857-3869. https://doi.org/10.1523/JNEUROSCI.5027-04.2005
  29. Mnatsakanyan N, Park HA, Wu J, Miranda P, Jonas EA. 2018. Molecular composition, structure and regulation of the mitochondrial permeability transition pore. Biophys. J. 114: 658a. https://doi.org/10.1016/j.bpj.2017.11.3555
  30. Vincent AM, Kato K, McLean LL, Soules ME, Feldman EL. 2009. Sensory neurons and schwann cells respond to oxidative stress by increasing antioxidant defense mechanisms. Antioxid. Redox Signal. 11: 425-438. https://doi.org/10.1089/ars.2008.2235
  31. Sesti F, Liu S, Cai SQ. 2010. Oxidation of potassium channels by ROS: a general mechanism of aging and neurodegeneration?. Trends Biol. 20: 45-51. https://doi.org/10.1016/j.tcb.2009.09.008
  32. Rohn TT. 2015. Caspase cleaved tau in Alzheimer's disease: a therapeutic target realized. Int. J. Neurol. Neurother. 2: 014.
  33. Pirnia F, Schneider E, Betticher DC, Borner MM. 2002. Mitomycin C induces apoptosis and caspase-8 and-9 processing through a caspase-3 and Fas-independent pathway. Cell Death Differ. 9: 905-914. https://doi.org/10.1038/sj.cdd.4401062
  34. Hernandez F, Avila J. 2008. The role of glycogen synthase kinase 3 in the early stages of Alzheimers' disease. FEBS Lett. 582: 3848-3854. https://doi.org/10.1016/j.febslet.2008.10.026
  35. Yamada M. 2018. Senile Dementia of the Neurofibrillary Tangle Type (SD-NFT). Brain Nerve 70: 533-541.

Cited by

  1. Melatonin alleviates hippocampal GR inhibition and depression-like behavior induced by constant light exposure in mice vol.228, 2021, https://doi.org/10.1016/j.ecoenv.2021.112979