과제정보
This research was supported by PNU-RENovation (2019-2020).
참고문헌
- Joseph WK, Leong J, Teintze M, Schroth MN. 1980. Enhanced plant growth by siderophores produced by plant growth promoting rhizobacteria. Nature 286: 885-886. https://doi.org/10.1038/286885a0
- Glick B. 1995. The enhancement of plant growth by free-living bacteria. Can. J. Microbiol. 41: 109-117. https://doi.org/10.1139/m95-015
- Rodelas BJ, Gonzalez-Lopez, Martinez-Toledo MV, Pozo C, Salmeron V. 1999. Influence of Rhizobium/Azotobacter and Rhizobium/Azospirillum combined inoculation on mineral composition of faba bean (Vicia faba L.). Biol. Fertil Soils. 29: 165-169. https://doi.org/10.1007/s003740050540
- Bashan Y, Levanony H. 1990. Current status of Azospirillum inoculation technology: Azospirillum as a challenge for agriculture. Can. J. Microbiol. 36: 591-608. https://doi.org/10.1139/m90-105
- Chakraborty U, Purkayastha RP. 1983. Role of rhizobitoxine in protecting soybean roots from Macrophomina phaseolina infection. Can. J. Microbiol. 30: 285-289. https://doi.org/10.1139/m84-043
- Yuan WM, Crawford DL. 1995. Characterization of Streptomyces lydicus WYEC108 as a potential biocontrol agent against fungal root and seed rots. Appl. Environ. Microbiol. 61: 3119-3128. https://doi.org/10.1128/aem.61.8.3119-3128.1995
- Orhan E, Esitken A, Ercisli S, Turan M, Sahin F. 2006. Effects of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrient contents in organically growing raspberry. Sci. Hortic. 111: 38-43. https://doi.org/10.1016/j.scienta.2006.09.002
- Maksimov IV, Abizgil'dina RR, Pusenkova LI. 2011. Plant growth promoting rhizobacteria as alternative to chemical crop protectors from pathogens (review). Appl. Biochem. Microbiol. 47: 333-345. https://doi.org/10.1134/S0003683811040090
- Stein T. 2005. Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol. Microbiol. 56: 845-857. https://doi.org/10.1111/j.1365-2958.2005.04587.x
- Dunlap C, Kim SJ, Kwon SW, Rooney AP. 2016. Bacillus velezensis is not a later heterotypic synonym of Bacillus amyloliquefaciens; Bacillus methylotrophicus, Bacillus amyloliquefaciens subsp. plantarum and 'Bacillus oryzicola' are later heterotypic synonyms of Bacillus velezensis based on phylogenomics. Int. J. Syst. Evol. Microbiol. 66: 1212-1217. https://doi.org/10.1099/ijsem.0.000858
- Rabbee MF, Ali MS, Choi J, Hwang BS, Jeong SC, Baek KH. 2019. Bacillus velezensis: A valuable member of bioactive molecules within plant microbiomes. Molecules 24: 1-13. https://doi.org/10.3390/molecules24010001
- Abriouel H, Franz CM, Omar NB, Galvez A. 2011. Diversity and applications of Bacillus bacteriocins. FEMS Microbiol. Rev. 35: 201-232. https://doi.org/10.1111/j.1574-6976.2010.00244.x
- Cleveland J, Montville TJ, Nes IF, Chikindas ML. 2001. Bacteriocins: safe, natural antimicrobials for food preservation. Int. J. Food Microbiol. 71: 1-20. https://doi.org/10.1016/S0168-1605(01)00560-8
- Caulier S, Nannan C, Gillis A, Licciardi F, Bragard C, Mahillon J. 2019. Overview of the antimicrobial compounds produced by members of the Bacillus subtilis Group. Front. Microbiol. 10: 302. https://doi.org/10.3389/fmicb.2019.00302
- Rangarajan V, Kim GC. 2016. Towards bacterial lipopeptide products for specific applications - a review of appropriate downstream processing schemes. Process Biochem. 51: 2176-2185. https://doi.org/10.1016/j.procbio.2016.08.026
- Ma Z, Zhang S, Zhang S, Wu G, Shao Y, Mi Q, et al. 2020. Isolation and characterization of a new cyclic lipopeptide surfactin from a marine-derived Bacillus velezensis SH-B74. J. Antibiot. 73: 863-867. https://doi.org/10.1038/s41429-020-0347-9
- Kang DW, Ryu IH, Han SS. 2012. The isolation of Bacillus subtilis KYS-10 with antifungal activity against plant pathogens. Korean J. Pestic. Sci. 16: 178-186. https://doi.org/10.7585/kjps.2012.16.2.178
- Smith JL, Collins HP, Crump AR, Bailey VL. 2015. Management of soil biota and their processes, pp. 539-572. In Paul EA (ed.), Soil Microbiology, Ecology and Biochemistry, 4th Ed. Waltham, MA : Academic Press, Boston, USA.
- Blin K, Shaw S, Steinke K, Villebro R, Ziemert N, Lee SY, et al. 2019. AntiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res. 47: W81-W87. https://doi.org/10.1093/nar/gkz310
- Russell AD. 1998. Mechanisms of Bacterial Resistance to Antibiotics and Biocides, pp. 133-197. In Ellis GP, Luscombe DK, Oxford AW (ed.), Prog. Med. Chem., Ed. Elsevier, Amsterdam, Netherlands, Oxford, England.
- Russell AD. 1998. Mechanisms of bacterial resistance to antibiotics and biocides. Prog. Med. Chem. 35: 133-197. https://doi.org/10.1016/S0079-6468(08)70036-5
- Patel P, Huangn S, Fisher S, Pirnik D, Aklonis C, Dean L, et al. 1995. Bacillaene, a novel inhibitor of procaryotic protein synthesis produced by Bacillus subtilis. J. Antibiot. 48: 997-1003. https://doi.org/10.7164/antibiotics.48.997
- Muller S, Strack SN, Hoefler BC, Straight PD, Kearns DB, Kirby JR. 2014. Bacillaene and sporulation protect Bacillus subtilis from predation by Myxococcus xanthus. Appl. Environ. Microbiol. 80: 5603-5610. https://doi.org/10.1128/AEM.01621-14
- Gong A, Li HP, Yuan QS, Song XS, Yao W, He WJ, et al. 2015. Antagonistic mechanism of iturin A and plipastatin A from Bacillus amyloliquefaciens S76-3 from wheat spikes against Fusarium graminearum. PLoS One 10: e0116871. https://doi.org/10.1371/journal.pone.0116871
- Koumoutsi A, Chen XH, Henne A, Liesegang H, Hitzeroth G, Franke P, et al. 2004. Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42. J. Bacteriol. 186: 1084-1096. https://doi.org/10.1128/JB.186.4.1084-1096.2004
- Chen M, Wang J, Liu B, Zhu Y, Xiao R, Yang W, et al. 2020. Bio-control of tomato bacterial wilt by the new strain Bacillus velezensis FJAT-46737 and its lipopeptides. BMC Microbiol. 20: 160-172. https://doi.org/10.1186/s12866-020-01851-2
- Stincone P, Veras FF, Pereira JQ, Mayer FQ, Varela APM, Brandelli A. 2020. Diversity of cyclic antimicrobial lipopeptides from Bacillus P34 revealed by functional annotation and comparative genome analysis. Microbiol. Res. 238: 126515. https://doi.org/10.1016/j.micres.2020.126515