References
- ACI 446 (1997), Finite Element Analysis of Fracture in Concrete Structures: State-of-the-Art (ACI 446.3R-97), American Concrete Institute, Farmington Hills, MI, USA.
- Alam, S.Y., Zhu, R. and Loukili, A. (2020), "A new way to analyse the size effect in quasi-brittle materials by scaling the heterogeneity size", Eng. Fract. Mech., 225, 106864. https://doi.org/10.1016/j.engfracmech.2019.106864.
- Alembagheri, M. and Ghaemian, M. (2013), "Damage assessment of a concrete arch dam through nonlinear incremental dynamic analysis", Soil Dyn. Earthq. Eng., 44, 127-137. https://doi.org/10.1016/j.soildyn.2012.09.010.
- Alembagheri, M. and Ghaemian, M. (2015), "Seismic performance evaluation of a jointed arch dam", Struct. Infrastruct. Eng., 12, 256-274. https://doi.org/10.1080/15732479.2015.1009124.
- Alijani-Ardeshir, M., NavayiNeya, B. and Ahmadi, M.T. (2019), "Comparative study of various smeared crack models for concrete dams", Gradevinar, 71(4), 305-318. https://doi.org/10.14256/JCE.1540.2015.
- Arjmandi, S.A. and Lotfi, V. (2011), "Computing mode shapes of fluid-structure systems using subspace iteration methods", Sci. Iran, 18(6), 1159-1169. https://doi.org/10.1016/j.scient.2011.09.011.
- Aslani, F., Maia, L. and Santos, J. (2017), "Effect of specimen geometry and specimen preparation on the concrete compressive strength test", Struct. Eng. Mech., 62(1), 97-106. https://doi.org/10.12989/SEM.2017.62.1.097.
- Barzegar, F. and Maddipudi, S. (1997), "Three-dimensional modeling of concrete structures. Part I: Plain concrete", J. Struct. Eng., 123(10), 1339-1346. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:10(1339).
- Barzegar, F. and Maddipudi, S. (1997), "Three dimensional modeling of concrete structures. Part II: Reinforced concrete", J. Struct. Eng., 123(10), 1347-1356. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:10(1347).
- Bazant, Z.P. (2000), "Size effect", Int. J. Solid. Struct., 37(1-2), 69-80. https://doi.org/10.1016/S0020-7683(99)00077-3.
- Bazant, Z.P. and Oh, B.H. (1983), "Crack band theory for fracture of concrete", Mater. Struct., 16, 155-177. https://doi.org/10.1007/BF02486267.
- Bazant, Z.P., He, S., Plesha, M.E., Gettu, R. and Rowlands, R.E. (1991), "Rate and size effect in concrete fracture: Implications for dams". Proceedings of the International Conference on Dam Fracture, Denver, Colorado, USA, September.
- Brake, N., Allahdadi, H. and Adam, F. (2016), "Flexural strength and fracture size effects of pervious concrete", Constr. Build. Mater, 113, 536-543. https://doi.org/10.1016/j.conbuildmat.2016.03.045.
- Caglar, Y. and Sener, S. (2016), "Size effect tests of different notch depth specimens with support rotation measurements", Eng. Fract. Mech., 157, 43-55. https://doi.org/10.1016/j.engfracmech.2016.02.028.
- Calayir, Y. and Karaton, M. (2005), "Seismic fracture analysis of concrete gravity dams including dam-reservoir interaction", Comput. Struct., 83, 1595-1606. https://doi.org/10.1016/j.compstruc.2005.02.003.
- Carlonia, C., Cusatis, G., Salviato, M., Jia-Liang, L., Hoover, C.G. and Bazant, Z.P. (2019), "Critical comparison of the boundary effect model with cohesive crack model and size effect law", Eng. Fract. Mech., 215, 193-210. https://doi.org/10.1016/j.engfracmech.2019.04.036.
- Carlonia, C., Santandrea, M. and Wendner, R. (2017), "An investigation on the width and size effect in the evaluation of the fracture energy of concrete", Procedia Struct. Integ., 3, 450-458. https://doi.org/10.1016/j.prostr.2017.04.065.
- Chalioris, C.E. (2006), "Experimental study of the torsion of reinforced concrete members", Struct. Eng. Mech., 23(6), 713-737. https://doi.org/10.12989/SEM.2006.23.6.713.
- Chen, Y., Wang, K., Wang, X. and Zhou, W. (2013), "Strength, fracture and fatigue of pervious concrete", Constr. Build. Mater., 42, 97-104. https://doi.org/10.1016/j.conbuildmat.2013.01.006.
- Chu, X., Yu, C., Xiu, C. and Xu, Y. (2015), "Two scale modeling of behaviors of granular structure: size effects and displacement fluctuations of discrete particle assembly", Struct. Eng. Mech., 55(2), 315-334. https://doi.org/10.12989/SEM.2015.55.2.315.
- Duron, Z.H. and Hall, J.F. (1988), "Experimental and finite element studies of the forced vibration response of morrow point dam", Earthq. Eng. Struct. Dyn., 16(7), 1021-1039. https://doi.org/10.1002/eqe.4290160706.
- Espandar, R. and Lotfi, V. (2003), "Comparison of non-orthogonal smeared crack and plasticity models for dynamic analysis of concrete arch dams", Comput. Struct., 81(14), 1461-1474. https://doi.org/10.1016/S0045-7949(03)00083-X.
- Espandar, R., Lotfi, V. and Razaqpur, G. (2000), "Seismic analysis of concrete arch dams by smeared crack approach", 12th World Conference of Earthquake Engineering, Auckland, New Zealand, February.
- Fenves, G.L., Mojtahedi, S. and Reimer, R.B. (1989), "ADAP88: A computer program for nonlinear earthquake analysis of concrete arch dams", Report No. UCB/EERC 89/12; Earthquake Engineering Research Center, College of Engineering, University of California, Berkeley, USA.
- Guanglun, W., Pekau, O.A., Chuhan, Z. and Shaumin, W. (2000), "Seismic fracture analysis of concrete gravity dams based on nonlinear fracture mechanics", Eng. Fract. Mech., 65, 67-87. https://doi.org/10.1016/S0013-7944(99)00104-6.
- Hall, J.F. and Chopra, A.K. (1983), "Dynamic analysis of arch dams including hydrodynamic effects", J. Eng. Mech., 109(1), 149-67. https://doi.org/10.1061/(ASCE)0733-9399(1983)109:1(149).
- Hariri-Ardebili, M.A., Seyed-Kolbadi, S.M. and Mirzabozorg, H. (2013), "A smeared crack model for seismic failure analysis of concrete gravity dams considering fracture energy effects", Struct. Eng. Mech., 48(1), 17-39. http://doi.org/10.12989/sem.2013.48.1.017.
- Havlasek, P., Grassl, P. and Jirasek, M. (2016), "Analysis of size effect on strength of quasi-brittle materials using integral-type nonlocal models", Eng. Fract. Mech., 157, 72-85. https://doi.org/10.1016/j.engfracmech.2016.02.029.
- Heinrich, C. and Waasy, A.M. (2012), "Investigation of progressive damage and fracture in laminated composites using the smeared crack approach", Proceedings of the 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Honolulu, Hawaii.
- Hoover, C.G. and Bazant, Z.P. (2013), "Comprehensive concrete fracture tests: size effects of types 1 & 2, crack length effect and postpeak", Eng. Fract. Mech., 110, 281-289. https://doi.org/10.1016/j.engfracmech.2013.08.008.
- Hoover, C.G. and Bazant, Z.P. (2014), "Universal size-shape effect law based on comprehensive concrete fracture tests", J. Eng. Mech., 140(3), 473-479. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000627.
- Hoover, C.G. and Bazant, Z.P. (2014a), "Cohesive crack, size effect, crack band and work-of-fracture models compared to comprehensive concrete fracture tests", Int. J. Fract., 187, 133-143. https://doi.org/10.1007/s10704-013-9926-0.
- Hoover, C.G., Bazant, Z.P., Vorel, J., Wendner, R. and Hubler, M.H. (2013), "Comprehensive concrete fracture tests: Description and results", Eng. Fract. Mech., 114, 92-103. https://doi.org/10.1016/j.engfracmech.2013.08.007.
- Ince, R. (2004), "A novel meso-mechanical model for concrete fracture", Struct. Eng. Mech., 18(1), 91-112. http://doi.org/10.12989/sem.2004.18.1.091.
- Ince, R. and Arici, E. (2005), "Size effect in concrete blocks under local pressure", Struct. Eng. Mech., 19(5), 567-580. http://doi.org/10.12989/sem.2005.19.5.567.
- Korol, E., Tejchman, J. and Mroz, Z. (2017), "Experimental and numerical assessment of size effect in geometrically similar slender concrete beams with basalt reinforcement", Eng. Struct., 141, 272-291. https://doi.org/10.1016/j.engstruct.2017.03.011.
- Lee, J. and Fenves, G.L. (1998), "A plastic-damage concrete model for earthquake analysis of dams", Earthq. Eng. Struct. Dyn., 27(9), 937-956. https://doi.org/10.1002/(SICI)1096-9845(199809)27:9<937::AID-EQE764>3.0.CO;2-5.
- Liu, J., Wang, W., Zhao, Z. and Soh, A.K. (2017), "On elastic and plastic length scales in strain gradient plasticity", Struct. Eng. Mech., 61(2), 275-282. https://doi.org/10.12989/sem.2017.61.2.275.
- Lohrasbi, A.R. and Attarnejad, R. (2008), "Crack growth in concrete gravity dams based on discrete crack method", Am. J. Appl. Sci., 1(4), 318-323. https://doi.org/10.3844/ajeassp.2008.318.323.
- Lu, X.Z., Jiang, J.J. and Ye, L.P. (2006), "A composite crack model for concrete based on meshless method", Struct. Eng. Mech., 23(3), 217-232. http://doi.org/10.12989/sem.2006.23.3.217.
- Maekawa, K., Irawan, P. and Okamura, H. (1997), "Path-dependent three-dimensional constitutive laws of reinforced concrete-formulation and experimental verifications", Struct. Eng. Mech., 5(6), 743-754. http://doi.org/10.12989/sem.1997.5.6.743.
- Marzec, E., Tejchman, J. and Mroz, Z. (2019), "Numerical analysis of size effect in RC beams scaled along height or length using elasto-plastic-damage model enhanced by non-local softening", Finite Elem. Anal. Des., 157, 1-20. https://doi.org/10.1016/j.finel.2019.01.007.
- Menetrey, P. and Willam, K. (1995), "Tri-axial failure criterion for concrete and its generalization", ACI Struct. J., 92, 311-318. https://doi.org/10.14359/1132.
- Mirzabozorg, H. and Ghaemian, M. (2005), "Nonlinear behavior of mass concrete in three-dimensional problems using smeared crack approach", Earthq. Eng. Struct. Dyn., 34, 247-269. https://doi.org/10.1002/eqe.423.
- Mirzabozorg, H., Khaloo, A.R., Ghaemian, M. and Jalalzadeh, B. (2007), "Non-uniform cracking in smeared crack approach for seismic analysis of concrete dams in 3D space", Earthq Eng. Eng. Seism., 2, 48-57.
- Moallemi, S., Pietruszczak, S. and Mroz, Z. (2017), "Deterministic size effect in concrete structures with account for chemomechanical loading", Comput. Struct., 182, 74-86. https://doi.org/10.1016/j.compstruc.2016.10.003.
- Moradloo, A.J., Ahmadi, M.T. and Vahdani, S. (2008), "Nonlinear dynamic analysis of concrete arch dam", 14th World Conference of Earthquake Engineering, Beijing, China.
- Moradloo, A.J., Naserasadi, K. and Zamani, H. (2018), "Seismic fragility evaluation of arch concrete dams through nonlinear incremental analysis using smeared crack model", Struct. Eng. Mech., 68(6), 747-760. http://doi.org/10.12989/sem.2018.68.6.747.
- Mosler, J. and Meschke, G. (2004), "Embedded crack vs. smeared crack models: a comparison of elementwise discontinuous crack path approaches with emphasis on mesh bias", Comput. Meth. Appl. Mech. Eng., 193(30-32), 3351-3375. https://doi.org/10.1016/j.cma.2003.09.022.
- Muciaccia, G., Rosati, G. and Di Luzio, G. (2017), "Compressive failure and size effect in plain concrete cylindrical specimens", Constr. Build. Mater., 137, 185-194. https://doi.org/10.1016/j.conbuildmat.2017.01.057.
- Murthy, A.R.C., Palani, G.S. and Iyer, N.R. (2009), "Remaining life prediction of concrete structural components accounting for tension softening and size effects under fatigue loading", Struct. Eng. Mech., 32(3), 459-475. https://doi.org/10.12989/sem.2009.32.3.459.
- PEER Ground Motion Database (2020), Beta Version, University of California, Berkeley, CA, USA.
- Picazo, A., Alberti, M.G., Galvez, J.C., Enfedaque, A. and Vega, A.C. (2019), "The Size effect on flexural fracture of polyolefin fibre-reinforced concrete", Appl. Sci., 9(9), 1762. https://doi.org/10.3390/app9091762.
- Rong, H., Dong, W., Zhang, X. and Zhang, B. (2019), "Size effect on fracture properties of concrete after sustained loading", Mater. Struct., 52, 16. https://doi.org/10.1617/s11527-019-1326-0.
- Rots, J.G. and Blaauwendraad, J. (1989), "Crack models for concrete-Discrete or smeared? Fixed, multi-directional or rotating?", Heron, 34(1), 1989.
- Rots, J.G., Nauta, P., Ksters, G.M.A. and Blaauwendraad, J. (1985), "Smeared crack approach and fracture localization in concrete", Heron, 30(1), 1-48.
- Sim, J.I., Yang, K.H. and Jeon, J.K. (2013), "Influence of aggregate size on the compressive size effect according to different concrete types", Constr. Build. Mater., 44, 716-725. https://doi.org/10.1016/j.conbuildmat.2013.03.066.
- Sinaie, S. (2017), "Application of the discrete element method for the simulation of size effects in concrete samples", Int. J. Solid. Struct., 108, 244-253. https://doi.org/10.1016/j.ijsolstr.2016.12.022.
- Suryanto, B., Nagai, K. and Maekawa, K. (2010), "Smeared-crack modeling of R/ECC membranes incorporating an explicit shear transfer model", J. Adv. Concrete Technol., 8(3), 315-326. https://doi.org/10.3151/jact.8.315.
- Syroka-Korol, E. and Tejchman, J. (2014), "Experimental investigations of size effect in reinforced concrete beams failing by shear", Eng. Struct., 58, 63-78. https://doi.org/10.1016/j.engstruct.2013.10.012.
- Syroka-Korol, E., Tejchman, J. and Mroz, Z. (2014), "FE analysis of size effects in reinforced concrete beams without shear reinforcement based on stochastic elasto-plasticity with non-local softening", Finite Elem. Anal. Des., 88, 25-41. https://doi.org/10.1016/j.finel.2014.05.005.
- Tan, H. and Chopra, A.K. (1996), "Dam-foundation rock interaction effects in earthquake response of arch dams", J. Struct. Eng., 122(5), 528-538. https://doi.org/10.1061/(ASCE)0733-9445(1996)122:5(528).
- Trivedi, N., Singh, R.K. and Chattopadhyay, J. (2015), "Investigation on fracture parameters of concrete through optical crack profile and size effect studies", Eng. Fract. Mech., 147, 119-139. https://doi.org/10.1016/j.engfracmech.2015.08.027.
- Turk, K., Caliskan, S. and Sukru Yildirim, M. (2005), "Influence of loading condition and reinforcement size on the concrete/reinforcement bond strength", Struct. Eng. Mech., 19(3), 337-346. http://doi.org/10.12989/sem.2005.19.3.337.
- Wang, X. and Liu, X. (2004), "Bond strength modeling for corroded reinforcement in reinforced concrete", Struct. Eng. Mech., 17(6), 863-878. http://doi.org/10.12989/sem.2004.17.6.863.
- Wu, B., Liu, C. and Wu, Y. (2014), "Compressive behaviors of cylindrical concrete specimens made of demolished concrete blocks and fresh concrete", Constr. Build. Mater., 53, 118-130. https://doi.org/10.1016/j.conbuildmat.2013.11.071.
- Zhang, H. and Ohamachi, T. (2000), "Seismic cracking and strengthening of concrete gravity dams", 12th World Conference of Earthquake Engineering, Auckland, New Zealand, February.
- Zhao, Z., Kwon, S.H. and Shah, S.P. (2008), "Effect of specimen size on fracture energy and softening curve of concrete: Part I. Experiments and fracture energy", Cement Concrete Res., 38(8-9), 1049-1060. https://doi.org/10.1016/j.cemconres.2008.03.017.