References
- AISC (1989), American Institute of Steel Construction (AISC). Manual of Steel Construction Allowable Stress Design, 9th Edition, Chicago, IL. http://doi.org/10.1002/9781118631201.
- Artar, M. and Daloglu Ayse, T. (2019), "Optimum design of steel space truss towers under seismic effect using Jaya algorithm", Struct. Eng. Mech., 71(1), 1-12. http://doi.org/10.12989/sem.2019.71.1.001.
- Assimi, H., Jamali, A. and Nariman-zadeh, N. (2017), "Sizing and topology optimization of truss structures using genetic programming", Swarm Evolution. Comput., 37, 90-103. http://doi.org/10.1016/j.swevo.2017.05.009.
- Azad, S.K. and Hasancebi, O. (2014), "An elitist self-adaptive step-size search for structural design optimization", Appl. Soft Comput., 19, 226-235. https://doi.org/10.1016/j.asoc.2014.02.017.
- Baykasoglu, A. and Akpinar, S. (2015), "Weighted Superposition Attraction (WSA): A swarm intelligence algorithm for optimization problems-Part 2: Constrained optimization", Appl. Soft Comput., 37, 396-415. https://doi.org/10.1016/j.asoc.2015.08.052.
- Camp, C. (2007), "Design of space trusses using big bang-big crunch optimization", J. Struct. Eng., 133(7), 999-1008. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:7(999).
- Capriles, P., Goliatt, L., Barbosa, H. and Lemonge, A. (2006), "Rank-based ant colony algorithms for truss weight minimization with discrete variables", Commun. Numer. Meth. Eng., 23, 553-575. https://doi.org/10.1002/cnm.912.
- Cheng, M.Y., Prayogo, D., Wu, Y.W. and Lukito, M.M. (2016), "A Hybrid Harmony Search algorithm for discrete sizing optimization of truss structure", Auto. Constr., 69, 21-33. http://doi.org/10.1016/j.autcon.2016.05.023.
- Coello Coello, C.A. (2000), "Use of a self-adaptive penalty approach for engineering optimization problems", Comput. Indus., 41(2), 113-127. http://doi.org/10.1016/S0166-3615(99)00046-9.
- Das, K.N. and Singh, T.K. (2014), "Drosophila food-search optimization", Appl. Math. Comput., 231, 566-580. http://doi.org/10.1016/j.amc.2014.01.040.
- Deng, W., Chen, R., He, B., Liu, Y., Yin, L. and Guo, J. (2012), "A novel two-stage hybrid swarm intelligence optimization algorithm and application", Soft Comput., 16(10), 1707-1722. https://doi.org/10.1007/s00500-012-0855-z.
- Dorigo, M. and Blum, C. (2005), "Ant colony optimization theory: A survey", Theor. Comput. Sci., 344(2), 243-278. http://doi.org/10.1016/j.tcs.2005.05.020.
- Fan, Q. and Yan, X. (2014), "Self-adaptive particle swarm optimization with multiple velocity strategies and its application for p-Xylene oxidation reaction process optimization", Chemomet. Intel. Lab. Syst., 139, 15-25. http://doi.org/10.1016/j.chemolab.2014.09.002.
- Ghambari, S. and Rahati, A. (2018), "An improved artificial bee colony algorithm and its application to reliability optimization problems", Appl. Soft Comput., 62, 736-767. https://doi.org/10.1016/j.asoc.2017.10.040.
- Groenwold, A., Stander, N. and Snyman, J. (1999), "A regional genetic algorithm for the discrete optimal design of truss structures", Int. J. Numer. Meth. Eng., 44, 749-766. https://doi.org/10.1002/(SICI)1097- 0207(19990228)44:6<749::AID-NME523>3.0.CO;2-F.
- Groenwold, A.A. and Stander, N. (1997), "Optimal discrete sizing of truss structures subject to buckling constraints", Struct. Optim., 14(2), 71-80. https://doi.org/10.1007/BF01812508.
- Haftka, R.T. (2016), "Requirements for papers focusing on new or improved global optimization algorithms", Struct. Multidisc. Optim., 54(1), 1-1. https://doi.org/10.1007/s00158-016-1491-5.
- Hasancebi, O. (2008), "Adaptive evolution strategies in structural optimization: Enhancing their computational performance with applications to large-scale structures", Comput. Struct., 86(1-2), 119-132. http://doi.org/10.1016/j.compstruc.2007.05.012.
- Hasancebi, O., Teke, T. and Pekcan, O. (2013), "A bat-inspired algorithm for structural optimization", Comput. Struct., 128, 77-90. http://doi.org/10.1016/j.compstruc.2013.07.006.
- Ho-Huu, V., Nguyen-Thoi, T., Vo-Duy, T. and Nguyen-Trang, T. (2016), "An adaptive elitist differential evolution for optimization of truss structures with discrete design variables", Comput. Struct., 165, 59-75. https://doi.org/10.1016/j.compstruc.2015.11.014.
- Hussain, K., Salleh, M.N.M., Cheng, S. and Shi, Y. (2019), "On the exploration and exploitation in popular swarm-based metaheuristic algorithms", Neur. Comput. Appl., 31(11), 7665-7683. https://doi.org/10.1007/s00521-018-3592-0.
- Juang, D.S. and Chang, W.T. (2006), "A revised discrete Lagrangian-based search algorithm for the optimal design of skeletal structures using available sections", Struct. Multidisc. Optim., 31(3), 201-210. https://doi.org/10.1007/s00158-005-0571-8.
- Kalatjari, V. and Talebpour, M.H. (2009), "Reducing the effect of GA parameters on optimization of topology and cross section for truss structures using multi-search-method", J. Technol. Edu., 4(1), 57-72. https://doi.org/10.3311/PPci.8222.
- Kaveh, A. and Ilchi Ghazaan, M. (2015), "A comparative study of CBO and ECBO for optimal design of skeletal structures", Comput. Struct., 153, 137-147. https://doi.org/10.1016/j.compstruc.2015.02.028.
- Kaveh, A. and Talatahari, S. (2009), "A particle swarm ant colony optimization for truss structures with discrete variables", J. Constr. Steel Res., 65(8-9), 1558-1568. http://doi.org/10.1016/j.jcsr.2009.04.021.
- Kennedy, J. and Eberhart, R. (1995), "Particle swarm optimization", Proceedings of ICNN'95-International Conference on Neural Networks, 4, November.
- Kureta, R. and Kanno, Y. (2014), "A mixed integer programming approach to designing periodic frame structures with negative Poisson's ratio", Optim. Eng., 15(3), 773-800. http://doi.org/10.1007/s11081-013-9225-7.
- Le, D.T., Bui, D.K., Ngo, T.D., Nguyen, Q.H. and Nguyen-Xuan, H. (2019), "A novel hybrid method combining electromagnetism-like mechanism and firefly algorithms for constrained design optimization of discrete truss structures", Comput. Struct., 212, 20-42. https://doi.org/10.1016/j.compstruc.2018.10.017.
- Li, L.J., Huang, Z.B. and Liu, F. (2009), "A heuristic particle swarm optimization method for truss structures with discrete variables", Comput. Struct., 87(7-8), 435-443. http://doi.org/10.1016/j.compstruc.2009.01.004.
- Liu, H., Cai, Z. and Wang, Y. (2010), "Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization", Appl. Soft Comput., 10(2), 629-640. https://doi.org/10.1016/j.asoc.2009.08.031.
- Mlakar, U., Fister, I. and Fister, I. (2016), "Hybrid self-adaptive cuckoo search for global optimization", Swarm Evol. Comput., 29, 47-72. https://doi.org/10.1016/j.swevo.2016.03.001.
- Moloodpoor, M., Mortazavi, A. and Ozbalta, N. (2021), "Thermo-economic optimization of double pipe heat exchanger using a compound swarm intelligence", Heat Transf. Res., https://doi.org/10.1615/HeatTransRes.2021037293.
- Mortazavi, A. (2019), "Interactive fuzzy search algorithm: A new self-adaptive hybrid optimization algorithm", Eng. Appl. Artif. Intel., 81, 270-282. https://doi.org/10.1016/j.engappai.2019.03.005.
- Mortazavi, A. (2020), "Large-scale structural optimization using a fuzzy reinforced swarm intelligence algorithm", Adv. Eng. Softw., 142, 102790. https://doi.org/10.1016/j.advengsoft.2020.102790.
- Mortazavi, A. (2020), "A new fuzzy strategy for size and topology optimization of truss structures", Appl. Soft Comput., 93, 106412. https://doi.org/10.1016/j.asoc.2020.106412.
- Mortazavi, A. (2020), "Size and layout optimization of truss structures with dynamic constraints using the interactive fuzzy search algorithm", Eng. Optim., 1-23. https://doi.org/10.1080/0305215X.2020.1726341.
- Mortazavi, A. (2021), "Bayesian interactive search algorithm: a new probabilistic swarm intelligence tested on mathematical and structural optimization problems", Adv. Eng. Softw., 155, 102994. https://doi.org/10.1016/j.advengsoft.2021.102994.
- Mortazavi, A. and Togan, V. (2021), Metaheuristic Algorithms for Optimal Design of Truss Structures, Springer International Publishing, Cham.
- Mortazavi, A. and Togan, V. (2017), "Sizing and layout design of truss structures under dynamic and static constraints with an integrated particle swarm optimization algorithm", Appl. Soft Comput., 51, 239-252. http://doi.org/10.1016/j.asoc.2016.11.032.
- Mortazavi, A., Togan, V., Daloglu, A. and Nuhoglu, A. (2018), "Comparison of two metaheuristic algorithms on sizing and topology optimization of trusses and mathematical functions", Gazi Univ. J. Sci., 31(2), 416-435. https://doi.org/10.1016/j.engappai.2018.03.003.
- Mortazavi, A., Togan, V. and Moloodpoor, M. (2019), "Solution of structural and mathematical optimization problems using a new hybrid swarm intelligence optimization algorithm", Adv. Eng. Softw., 127, 106-123. https://doi.org/10.1016/j.advengsoft.2018.11.004.
- Mortazavi, A., Togan, V. and Nuhoglu, A. (2017), "An integrated particle swarm optimizer for optimization of truss structures with discrete variables", Struct. Eng. Mech., 61, 359-370. https://doi.org/10.12989/sem.2017.61.3.359.
- Mortazavi, A., Togan, V. and Nuhoglu, A. (2017), "Weight minimization of truss structures with sizing and layout variables using integrated particle swarm optimize", J. Civil Eng. Manage., 23(8), 985-1001. https://doi.org/10.3846/13923730.2017.1348982.
- Mortazavi, A., Togan, V. and Nuhoglu, A. (2018), "Interactive search algorithm: A new hybrid metaheuristic optimization algorithm", Eng. Appl. Artif. Intel., 71, 275-292. https://doi.org/10.1016/j.engappai.2018.03.003.
- Oftadeh, R., Mahjoob, M.J. and Shariatpanahi, M. (2010), "A novel meta-heuristic optimization algorithm inspired by group hunting of animals: Hunting search", Comput. Math. Appl., 60(7), 2087-2098. http://doi.org/10.1016/j.camwa.2010.07.049.
- Omidvar, M.N., Yang, M., Mei, Y., Li, X. and Yao, X. (2017), "DG2: A faster and more accurate differential grouping for large-scale black-box optimization", IEEE Tran. Evol. Comput., 21(6), 929-942. http://doi.org/10.1109/TEVC.2017.2694221.
- Rao, R.V., Savsani, V.J. and Vakharia, D.P. (2011), "Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems", Comput. Aid. Des., 43(3), 303-315. http://doi.org/10.1016/j.cad.2010.12.015.
- Sadollah, A., Bahreininejad, A., Eskandar, H. and Hamdi, M. (2012), "Mine blast algorithm for optimization of truss structures with discrete variables", Comput. Struct., 102, 49-63. http://doi.org/10.1016/j.compstruc.2012.03.013.
- Sadollah, A., Eskandar, H., Bahreininejad, A. and Kim, J.H. (2015), "Water cycle, mine blast and improved mine blast algorithms for discrete sizing optimization of truss structures", Comput. Struct., 149, 1-16. ttp://doi.org/10.1016/j.compstruc.2014.12.003.
- Sergeyev, O. and Mroz, Z. (2000), "Sensitivity analysis and optimal design of 3D frame structures for stress and frequency constraints", Comput. Struct., 75(2), 167-185. http://doi.org/10.1016/S0045-7949(99)00088-7.
- Storn, R. and Price, K. (1997), "Differential evolution - A aimple and efficient heuristic for global optimization over continuous spaces", J. Global Optim., 11(4), 341-359. http://doi.org/10.1023/a:1008202821328.
- Suganthan, P.N., Hansen, N., Liang, J.J., Deb, K., Chen, Y., Auger, A. and Tiwari, S. (2005), "Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization", Technical Report, Nanyang Technological University, Singapore, May 2005 AND KanGAL Report 2005005, IIT Kanpur, India.
- Talebpour, M.H., Kaveh, A. and Kalatjari, V. (2014), "Optimization of skeletal structures using a hybridized ant colony-harmony search-genetic algorithm", Iran. J. Sci. Technol.-Tran. Civil Eng., 38, 1-20. http://doi.org/10.22099/IJSTC.2014.1840.
- Tang, K., Li, Z., Luo, L. and Liu, B. (2015), "Multi-strategy adaptive particle swarm optimization for numerical optimization", Eng. Appl. Artif. Intel., 37, 9-19. http://doi.org/10.1016/j.engappai.2014.08.002.
- Wu, S.J. and Chow, P.T. (1995), "Steady-state genetic algorithms for discrete optimization of trusses", Comput. Struct., 56(6), 979-991. http://doi.org/10.1016/0045-7949(94)00551-D.
- Zhang, S., Luo, Q. and Zhou, Y. (2017), "Hybrid grey wolf optimizer using elite opposition-based learning strategy and simplex method", Int. J. Comput. Intel. Appl., 16(2), 175-187. http://doi.org/10.1142/s1469026817500122.