DOI QR코드

DOI QR Code

Manufacturing and Characteristics of Biodegradable Materials Based on Starch-Citric Acid for Anti-Particulate Scattering

전분-구연산을 기반으로 한 생분해성 비산방지용 소재의 제조 및 특성 분석

  • Lee, Ji Sung (Division of Chemical Engineering and Bioengineering, Kangwon National University) ;
  • Lee, Won Gyu (Division of Chemical Engineering and Bioengineering, Kangwon National University)
  • 이지성 (강원대학교 화공.생물공학부) ;
  • 이원규 (강원대학교 화공.생물공학부)
  • Received : 2021.02.24
  • Accepted : 2021.03.17
  • Published : 2021.08.01

Abstract

A biodegradable shatterproof thin film material having excellent water resistance and applicability was prepared by crosslinking through esterification of starch and citric acid. In order to improve the thin film formation and physical properties of these materials, PVA and glycerin were added to secure the flexibility of the applied thin film. In addition, conditions for optimizing material functionality such as swelling degree and solubility in water according to reaction time, temperature, and concentrations of raw materials and additives were analyzed. The crosslinking reaction of starch and citric acid was confirmed by FT-IR analysis, and it was found that single and multiple esterification reactions occurred simultaneously in these reaction processes. It can be seen that the crosslinked starch-citric acid thin film material was decomposed about 95% after 12 weeks after landfilling, and thus biodegradability was excellent.

전분과 구연산의 에스테르화 반응을 통한 가교화로 내수성 및 도포성이 우수한 생분해성 비산 방지용 박막소재를 제조하고 특성을 분석하였다. 이들 소재의 박막 형성 및 물성을 향상하기 위하여 PVA과 글리세린 등을 첨가하여 도포된 박막의 유연성을 확보하였다. 또한 원재료 및 첨가재의 농도, 온도 및 반응 시간에 따른 물에 대한 팽윤도 및 용해도와 같이 재료 기능성을 최적화하는 조건을 분석하였다. FT-IR 분석으로 전분과 구연산의 가교 반응을 확인하였으며, 이들 반응과정에서 단일 및 다중 에스테르화 반응이 동시에 일어남을 알 수 있었다. 가교된 전분-구연산 박막재료는 토양매립 후 12주가 지났을 때 95%가량 분해되었어 생분해성이 우수함을 알 수 있다.

Keywords

Acknowledgement

2018년도 강원대학교 대학회계 연구비의 지원을 받아 수행한 연구임.

References

  1. Hwang, S. K., Hwang, H. S. and Hwang, S. J., "Composition of Scattering Dust Inhibitor for Civil Engineering and Condtructio Field," Korean Patent No. 10-1071445(2011).
  2. Lee, S. B. and Kim, Y. J., "Surface Curing Agent for Anti-scattering of Dust and Process Thereof," Korean Patent No. 10-0755901(2007).
  3. Yoo, H. H., Kim, J. C. and Park, H. I., "Oil Gel Composition for Inhibiting Scattering Dust and Preparing The Same," Korean Patent No. 10-1407917(2014).
  4. Suk, J. M. and Jang, Y. H., "Two-liquid type Coating composition for Preventing Dust Scattering and Method thereof," Korean Patent No. 10-1150277(2012).
  5. Suk, Y. J., "Natural Adhesive Composition," Korean Patent No. 10-0748156(2007).
  6. Do, H. J., "Scatterproof Agent and The manufacturing Method Thereof," Korean Patent No. 10-1370278(2014).
  7. Acker, D., Babic, J., Jozinovic, A., Milicevic, B., JoKic, S., Milicevic, R., Rajic, M. and Subaric, D., "Starch Modification by Organic Acids and Their Derivatives : A Review," Molecules, 20(10), 19554-19570(2015). https://doi.org/10.3390/molecules201019554
  8. Chen, L., Imam, S. H., Gordon, S. H. and Greene, R. V., "Starch-Polyvinyl Alcohol Crosslinked Film-Performance and Biodegradation," J. Environ. Polym. Degr., 5, 111-117(1997). https://doi.org/10.1007/BF02763594
  9. Reddy, N. and Yang, Y., "Citric Acid Cross-linking of Starch Films," Food Chemistry, 118(3), 702-711(2010). https://doi.org/10.1016/j.foodchem.2009.05.050
  10. Yang, C. Q., "FTIR Spectroscopy Study of Ester Crosslinking of Cotton Cellulose Catalyzed by Sodium Hypophosphite," Textile Res. J., 71(2), 201-206(2001). https://doi.org/10.1177/004051750107100303
  11. Ramirez, J. A. A., Fortunati, E., Kenny, J. M., Torre, L. and Foresti, H. L., "Simple Citric Acid-Catalyzed Surface Esterification of Cellulose Nanocrystals," Carbohydr. Poly., 157, 1358-1364(2017). https://doi.org/10.1016/j.carbpol.2016.11.008
  12. Park, H. R., Chough, S. H., Yun, Y. H. and Yoon, S. D., "Properties of Starch/PVA Blend Films Containing Citric Acid as Additive," J. Polym. Environ., 13(4), 375-382(2005). https://doi.org/10.1007/s10924-005-5532-1
  13. Kapelko-Zeberska, M., Zieba, T., Pietrzak, W. and Gryszkin, A., "Effect of Citric Acid Esterification Conditions on The Properties of The Obtaind Resistant Starch," International Journal of Food Science and Technology, 51, 1647-1654(2016). https://doi.org/10.1111/ijfs.13136
  14. Jeon, Y. S., Lowell, A. V. and Gross, R. A., "Studies of Starch Esterification: Reactions with Alkenylsuccinates in Aqueous Slurry Systems," Starch, 51, 90-93(1999). https://doi.org/10.1002/(SICI)1521-379X(199903)51:2<90::AID-STAR90>3.0.CO;2-M
  15. Thomas, L.V., Arun, U., Remya, S. and Nair, P.D., "A Biodegradable and Biocompatible PVA-Citric Acid Polyester with Potential Applications as Matrix for Vascular Tissue Engineering," J. Mater. Sci. : Mater. Med., 20, S259-S269(2009).
  16. Shi, R., Bi, J., Zhang, Z., Zhu, A., Chen, D., Zhou, X., Zhang, L. and Tian, W., "The Effect of Citric Acid on The Structural Properties and Cytotoxicity of The Polyvinyl Alcohol/Starch Films When Molding at High Temperature," Carbohydr. Poly., 74, 763-770(2008). https://doi.org/10.1016/j.carbpol.2008.04.045
  17. Liu, Z. Q. and Yi, X. S., "Effects of Glycerin and Glycerol Monostearate on Performance of Thermoplastic Starch," J. Mater. Sci., 36, 1809-1815(2001). https://doi.org/10.1023/A:1017589028611
  18. Ratnayake, W. S. and Jackson, D. S., "Gelatinization and Solubility of Corn Starch during Heating in Excess Water : New Insights," J. Agric. Food Chem., 54, 3712-3716(2006). https://doi.org/10.1021/jf0529114