DOI QR코드

DOI QR Code

0.1 MWth 급 순환유동층에서의 무연탄 연소 전산유체역학 모사

Anthracite Oxygen Combustion Simulation in 0.1MWth Circulating Fluidized Bed

  • 고은솔 (전북대학교 환경에너지융합학과) ;
  • 국진우 (경원테크) ;
  • 서광원 (경원테크) ;
  • 서수빈 (전북대학교 자원에너지공학과) ;
  • 김형우 (전북대학교 환경에너지융합학과) ;
  • 강서영 (전북대학교 자원에너지공학과) ;
  • 이시훈 (전북대학교 환경에너지융합학과)
  • Go, Eun Sol (Department of Environment and Energy, Jeonbuk National University) ;
  • Kook, Jin Woo (KW Tech) ;
  • Seo, Kwang Won (KW Tech) ;
  • Seo, Su Been (Department of Mineral Resources Energy Engineering, Jeonbuk national university) ;
  • Kim, Hyung Woo (Department of Mineral Resources Energy Engineering, Jeonbuk national university) ;
  • Kang, Seo Yeong (Department of Environment and Energy, Jeonbuk National University) ;
  • Lee, See Hoon (Department of Environment and Energy, Jeonbuk National University)
  • 투고 : 2021.03.26
  • 심사 : 2021.05.12
  • 발행 : 2021.08.01

초록

낮은 반응성으로 인해 복잡한 공정이 필요한 무연탄은 순환유동층 내의 동적 거동을 통해 연소 특성이 고찰되어야 한다. Pilot 규모의 0.1MWth 급 순산소 순환유동층 연소로에서의 무연탄 연소 특성을 고찰하기 위하여 본 연구에서는 전산유체해석 기법을 이용하였다. 순산소 순환유동층 보일러는 연소로(0.15 m l.D., 10 m High), 싸이클론, 재순환부 등으로 구성되었고 동일한 크기의 3D 모델 반응기를 구축하였다.실험에 사용한 무연탄은 평균 입도 1,070 ㎛, 밀도 2,326 kg/m3이다. 공기 연소에서 순산소 연소로의 연소 환경 변화에 따른 반응기 내부의 기-고 흐름 패턴을 고찰하였다. 이때, 공기 연소와 순산소 연소에서 온도 분포는 비슷한 양상을 보이지만 압력 분포는 순산소 연소에서 더 낮음을 알 수 있었다. 더불어 공기 연소에 비해 순산소 연소에서 더 높은 CO2 농도를 가지므로 이산화탄소 포집이 활발히 이루어질 것을 예상해 볼 수 있다. 결과적으로 본 연구를 통해 무연탄 활용 시 순환유동층 반응기의 최적화된 설계 및 운전에 기여할 수 있음을 확인하였다.

The combustion characteristics of anthracite, which follow a complex process with low reactivity, must be considered through the dynamic behavior of circulating fluidized bed (CFB) boilers. In this study, computational fluid dynamics (CFD) simulation was performed to analyze the combustion characteristics of anthracite in a pilot scale 0.1 MWth Oxy-fuel circulating fluidized bed (Oxy-CFB) boiler. The 0.1MWth Oxy-CFB boiler is composed of combustor (0.15 m l.D., 10 m High), cyclone, return leg, and so on. To perform CFD analysis, a 3D simulation model reactor was designed and used. The anthracite used in the experiment has an average particle size of 1,070 ㎛ and a density of 2,326 kg/m3. The flow pattern of gas-solids inside the reactor according to the change of combustion environment from air combustion to oxygen combustion was investigated. At this time, it was found that the temperature distribution in air combustion and oxygen combustion showed a similar pattern, but the pressure distribution was lower in oxygen combustion. addition, since it has a higher CO2 concentration in oxygen combustion than in air combustion, it can be expected that carbon dioxide capture will take place actively. As a result, it was confirmed that this study can contribute to the optimized design and operation of a circulating fluidized bed reactor using anthracite.

키워드

과제정보

이 논문은 국토교통과학기술진흥원의 국토교통기술촉진연구사업(과제번호: 20RDPP-C158833)을 받아 수행된 연구입니다.

참고문헌

  1. Kunze, C., De, S. and Spliethoff, H., "A Novel IGCC Plant with Membrane Oxygen Separation and Carbon Capture by Carbonation-calcinations Loop," Int. J. Greenhouse Gas Control., 5, 1176-1183(2011). https://doi.org/10.1016/j.ijggc.2011.05.038
  2. International Energy Outlook 2016, U. S. Energy Information Administration(2016).
  3. Lee, C. T., Hashim, H., Ho, C. S. and Fan, Y. V., "Sustaining the Low-carbon Emission Development in Asia and Beyond: Sustainable Energy, Water, Tranportation and Low-carbon Emission Technology," J. Cleaner Prod., 146, 1-13(2017). https://doi.org/10.1016/j.jclepro.2016.11.144
  4. Kunze, C. and Spliethoff, H., "Assessment of Oxy-fuel, Pre- and Post-combustion-based Carbon Capture for Future IGCC Plants," Appl. Energy., 94, 109-116(2012). https://doi.org/10.1016/j.apenergy.2012.01.013
  5. Moon, J. H., Jo, S. H., Mun, T. Y., Park, S. J., Kim, J. Y., Khoi, N. H. and Lee, J. G., "Oxy Combustion Characteristics of Anthracite in a 100 kWth Circulating Fluidized Bed System," Korean. Chem. Eng. Res., 57, 400-407(2019).
  6. Gwak, Y. R., Kim, Y. B., Keel, S. I., Yun, J. H. and Lee, S. H., "Analysis of Oxygen Combustion Characteristics of a Low Grade Coal Using IEA-CFBC Model," Korean. Chem. Eng. Res., 56, 631-640(2018).
  7. Yang, C. W., Kim, Y. D., Bang, B. R., Jeong, S. H., Moon, J. H., Mun, T. Y., Jo, S. H., Lee, J. G. and Lee, E. D., "Oxy-CFB Combustion Technology for Use in Power-generation Applications," Fuel, 267, 117206(2020). https://doi.org/10.1016/j.fuel.2020.117206
  8. Singh, R. I. and Kumar, R., "Current Status and Experimental Investigation of Oxy-fired Fluidized Bed," Renewable Sustainable Energy Rev., 61, 398-420(2016). https://doi.org/10.1016/j.rser.2016.04.021
  9. Moon, J. H., Jo, S. H., Park, S. J., Khoi, N. H., Seo, M. W., Ra, H. W., Yoon, S. J., Yoon, S. M., Lee, J. G. and Mun, T. Y., "Carbon Dioxide Purity and Combustion Characteristics of Oxy Firing Compared to Air Firing in a Pilot-scale Circulating Fluidized Bed," Energy, 166, 183-192(2019). https://doi.org/10.1016/j.energy.2018.10.045
  10. Kang, S. Y., Go, E. S., Seo, S. B., Kim, H. W., Keel, S. I. and Lee, S. H., "A Comparative Evaluation of Recarbonated CaCO3 Derived from Limestone Under Oxy-fuel Circulating Fluidized Bed Conditions," Sci. Total Environ., 758, 143704(2021). https://doi.org/10.1016/j.scitotenv.2020.143704
  11. Kim, Y. B., Gwak, Y. R., Keel, S. I., Yun, J. H. and Lee, S. H., "Direct Desulfurization of Limestones Under Oxy-circulating Fluidized Bed Combustion Conditions," Chem. Eng. J., 377, 119650 (2019). https://doi.org/10.1016/j.cej.2018.08.036
  12. Gwak, Y. R., Yun, J. H., Keel, S. I. and Lee, S. H., "Numerical Study of Oxy-fuel Combustion Behaviors in a 2MWe CFB Boier," Korean J. Chem. Eng., 37, 1878-1887(2020). https://doi.org/10.1007/s11814-020-0611-5
  13. Ngo, S. I. and Lim, Y. I., "Multiscale Eulerian CFD of Chemical Processes: A Review," ChemEngineering., 4, 1-27(2020).
  14. Abdi, H., Pourmahmoud, N. and Soltan, J., "A Novel CFD Simulation of H2 Separation by Pd-based Helical and Straight Membrane Tube," Korean J. Chem. Eng., 37, 2041-2053(2020). https://doi.org/10.1007/s11814-020-0657-4
  15. Lee, J. M. and Kim, J. S., "Simulation of the Tonghae Thermal Power Plant CFB by Using IEA-CFBC Model-Determination of the CFB Combustor Performance with Cyclone Modification," HWAHAK KONGHAK, 38, 53-61(2000).
  16. Kim, S. M., Lee, J. M., Kim, J. S. and Song, K. K., "Evaluation of Performance for the Tonghae CFBC with Operation Parameters," Energy Eng. J., 9, 250-260(2000).
  17. He, H. and Zhuang, H., "Study on the Optimal Running Temperature of Circulating Fluidized Bed Boiler Burning Fujian Anthracite," Adv. Mater. Res., 732, 291-296(2013). https://doi.org/10.4028/www.scientific.net/AMR.732-733.291
  18. Wu, Y., Liu, D., Ma, J. and Chen, X., "Three-Dimensional Eulerian-Eulerian Simulation of Coal Combustion under Air Atmosphere in a Circulating Fluidized Bed Combust or," Energy Fules, 31, 7952-7966(2017). https://doi.org/10.1021/acs.energyfuels.7b01084
  19. Gu, J., Zhong, W. and Yu, A., "Three-dimensional Simulation of Oxy-fuel Combustion in a Circulating Fluidized Bed," Powder Technol., 351, 16-37(2019). https://doi.org/10.1016/j.powtec.2019.04.008
  20. Shi, X., Sun, R., Lan, X., Liu, F., Zhang, Y. and Gao, J., "CPFD Simulation of Solids Residence Time and Back-mixing in CFB Risers," Powder Technol., 271, 16-25(2015). https://doi.org/10.1016/j.powtec.2014.11.011
  21. Wang, Q., Niemi, T., Peltola, J., Yang, H., Lu, J. and Wei, L., "Particle Size Distribution in CPFD Modeling of Gas-solid Flows in a CFB Riser," Particuology, 21, 107-117(2015). https://doi.org/10.1016/j.partic.2014.06.009
  22. Wu, Y., Peng, L., Qin, L., Wang, M., Gao, J. and Lan, X., "Validation and Application of CPFD Models in Simulating Hydrodynamics and Reactions in Riser Reactor with Geldart A Particles," Powder Technol., 323, 269-283(2018). https://doi.org/10.1016/j.powtec.2017.10.003
  23. Blaser, P., Thibault, S. and Sexton, J., "Use of Computational Modeling for FCC Reactor Cyclone Erosion Reduction at the Marathon Petroleum Catlettsburg Refinery," The 14th International Conference on Fluidization - From Fundamentals to Products, May, Netherlands, 347-354(2013).
  24. Parker, J. M., "Validation of CFD Model for Polysilicon Deposition and Production of Silicon Fines in a Silane Deposition FBR," Int. J. Chem. React. Eng., 9, A40(2011).
  25. O'Hern, T. J., Trujilo, S. M., Torczynski, J. R., Tortora, P. R., Oelfke, J. B. and Bhusarapu, S., "Circulating Fludized Bed Hydrodynamics Experiments for the Multiphase Fluid Dynamics Reserch Consortium (MFDRC)," Sandia report, SAND2006-4914(2006).
  26. Cocco, R., "How PSRI Streamlines Our Work Process Using Barracuda VR," 2019 Barracuda User Conference in Chicago, June, Chicago, Illinois, USA(2019).
  27. Weber, J., "Modeling of a Vortexing Circulating Fluidized Bed (VCFB) for Process Intensification," 2019 Barracuda User Conference in Chicago, June, Chicago, Illinois, USA(2019).
  28. Kook, J. W., "CPFD Simulation Analysis to Improve Cyclone Efficiency and Combustion Performance of CFBC," 2019 Barracuda User conference in Korea, November, Daejeon, Korea(2019).
  29. Lee, E. D., "Improving Simulation Performance of CFBC Boiler by Using Multi-dimensional Numerical Analysis," 2019 Barracuda User conference in Korea, November, Daejeon, Korea(2019).
  30. Choi, H. S., "Numerical Simulation for Fast Pyrolysis of Biomass in a Spouted Bed," 2019 Barracuda User conference in Korea, November, Daejeon, Korea(2019).
  31. Lee, D. Y., "Cold Bed Simulations Applied Non-uniform Inlet Flow Rate Through CFD and a Grid Resolution Test on a Dual Bed Reactor," 2019 Barracuda User conference in Korea, November, Daejeon, Korea(2019).
  32. Diez, L. I., Lupianez, C., Guedea, I., Bolea, I. and Romeo, L. M., "Anthracite Oxy-combustion Characteristics in a 90 kWth Fluidized Bed Reactor," Fuel Process. Technol., 139, 196-203(2015). https://doi.org/10.1016/j.fuproc.2015.07.021
  33. Lee, J. M., Kim, D. W. and Kim, J. S., "Characteristics of Co-combustion of Anthracite with Bituminous Coalin a 200-MWe Circulatingfluidized Bed Boiler," Energy, 36, 5703-5709(2011). https://doi.org/10.1016/j.energy.2011.06.051
  34. Lee, J. M., Kim, D. W., Kim, J. S., Na, J. G. and Lee, S. H., "Co-combustion of Refuse Derived Fuel with Korean Anthracite in a Commercial Circulating Fluidized Bed Boiler," Energy, 35, 2814-2818(2010). https://doi.org/10.1016/j.energy.2010.03.008
  35. Kim, D. W., Lee, J. M., Kim, J. S. and Kim, J. J., "Co-combustion of Korean Anthracite with Bituminous Coal in Two Circulating Fluidized Bed Combustors," Korean J. Chem. Eng., 24, 461-465(2007). https://doi.org/10.1007/s11814-007-0080-0
  36. Riaza, J., Gil, M. V., Alvarez, L., Pevida, C., Pis, J. J. and Rubiera, F., "Oxy-fuel Combustion of Coal and Biomass Blends," Energy, 41, 429-435(2012). https://doi.org/10.1016/j.energy.2012.02.057
  37. Upadhyay, M., Park, H. C., Hwang, J. G., Choi, H. S., Jang, H. N. and Seo, Y. C., "Computational Particle-fluid Dynamics Simulation of Gas-solid Flow in a Circulating Fluidized Bed with Air or O2/CO2 as Fluidizing Gas," Powder Technol., 318, 350-362(2017). https://doi.org/10.1016/j.powtec.2017.06.021
  38. Go, E. S., Kang, S. Y., Seo, S. B., Kim, H. W. and Lee, S. H., "Slug Characteristics in a Bubbling Fluidized Bed Reactor for Polymerization Reaction," Korean Chem. Eng. Res., 58, 1-7(2020).
  39. Gu, J., Shao, Y. and Zhong, W., "Study on Oxy-fuel Combustion Behaviors in a S-CO2 CFB by 3D CFD Simulation," Chem. Eng. Sci., 211, 115262(2020). https://doi.org/10.1016/j.ces.2019.115262
  40. Gu, J., Liu, Q., Zhong, W. and Yu, A., "Study on Scale-up Characteristic of Oxy-fuel Combustion in Circulating Fluidized Bed Boiler by 3D CFD Simulation," Adv. Powder Technol., 31, 2136-2151(2020). https://doi.org/10.1016/j.apt.2020.03.007
  41. https://mfix.netl.doe.gov/c3m/.
  42. Upadhyay, M., Seo, M. W., Naren, P. R., Park, J. H., Nguyen, T. D. B., Rashid, K. and Lim, H. W., "Experiment and Multiphase CFD Simulation of Gas-solid Flow in a CFB Reactor at Various Operating Conditions: Assessing the Performance of 2D and 3D Simulations," Korean J. Chem. Eng., 37, 2094-2103(2020). https://doi.org/10.1007/s11814-020-0646-7
  43. Lee, S. H., Lee, J. M., Kim, J. S., Choi, J. H. and Kim, S. D., "Combustion Characteristics of Anthracite Coal in the D CFB Boiler," HWAHAK KONGHAK, 38, 516-522(2000).
  44. Jung, H. N., Kim, J. H., Back, S. K., Sung, J. H., Yoo, H. M., Choi, H. S. and Seo, Y. C., "Combustion Characteristics of Waste Sludge at Air and Oxy-fuel Combustion Conditions in a Circulating Fluidized Bed Reactor," Fuel, 170, 92-99(2016). https://doi.org/10.1016/j.fuel.2015.12.033
  45. Yang, S., Wang, S. and Wang, H., "Numerical Study of Biomass Gasification in a 0.3 MWth Full-loop Circulating Fluidized Bed Gasifier," Energy Convers. Manage., 223, 113439(2020). https://doi.org/10.1016/j.enconman.2020.113439
  46. Lee, J. M., Kim, J. S. and Lee, E. M., "Characteristics of Co-combustion of Korean Anthracite with Bituminous Coal in a Circulating Fluidized Bed," J. Korean Soc. Combust., 10, 1-9(2005).