DOI QR코드

DOI QR Code

Electrochemical Performances of Spherical Silicon/Carbon Anode Materials Prepared by Hydrothermal Synthesis

수열 합성법으로 제조된 구형의 실리콘/탄소 음극소재의 전기화학적 특성

  • Choi, Na Hyun (Department of Chemical Engineering, Chungbuk National University) ;
  • Lee, Jong Dae (Department of Chemical Engineering, Chungbuk National University)
  • 최나현 (충북대학교 화학공학과) ;
  • 이종대 (충북대학교 화학공학과)
  • Received : 2021.03.17
  • Accepted : 2021.04.19
  • Published : 2021.08.01

Abstract

In this study, a spherical carbon composite material containing nano-silicon was synthesized using hydrothermal synthesis, and coated with petroleum pitch to prepare an anode material to investigate the electrochemical characteristics. Hydrothermal synthesis was performed by varying molar concentration, and the pitch was coated using THF as an organic solvent to prepare a composite material. The physical properties of anode materials were analyzed using SEM, EDS, XRD and TGA, and the electrochemical performances were investigated by cycle, C-rate, cyclic voltammetry and electrochemical impedance tests in 1.0 M LiPF6 electrolyte (EC : DMC : EMC = 1 : 1 : 1 vol%). The pitch-coated silicon/carbon composite (Pitch@Si/C-1.5) with sucrose of 1.5 M showed a spherical shape. In addition, a high initial capacity of 1756 mAh/g, a capacity retention ratio of 82% after 50 cycles, and an excellent rate characteristic of 81% at 2 C/0.1 C were confirmed.

본 연구에서는 수열 합성법을 이용하여 나노 실리콘이 포함된 구형의 탄소 복합체를 합성하고, 석유계 피치로 코팅하여 제조된 음극 소재의 전기화학 특성을 조사하였다. 수크로스의 몰 농도를 변화시켜 수열합성한 후, 유기 용매로 THF를 사용하여 피치로 코팅된 음극 복합소재를 제조하였다. 제조된 음극 소재는 SEM, EDS, XRD 및 TGA를 사용하여 물리적 특성을 분석하였으며, 1.0 M LiPF6 (EC : DMC : EMC = 1 : 1 : 1 vol%) 전해액에서 사이클, 율속, 순환전압전류 및 임피던스 테스트를 통해 리튬이차전지의 전기화학 성능을 조사하였다. 1.5 M의 수크로스와 피치를 사용하여 제조된 실리콘/탄소 소재는 구형 형태를 보였으며, 1756 mAh/g의 높은 초기 용량, 50 사이클 후 82 %의 용량 유지율 및 2 C/0.1 C에서 81%의 우수한 속도 특성을 확인할 수 있었다.

Keywords

Acknowledgement

이 논문은 충북대학교 국립대학육성사업(2020)지원을 받아 작성되었음.

References

  1. Kobayashi, N., Inden, Y. and Endo, M., "Silicon/soft-carbon Nanohybrid Material with Low Expansion for High Capacity and Long Cycle Life Lithium-ion Battery," J. Power Sources, 326, 235-241(2016). https://doi.org/10.1016/j.jpowsour.2016.06.117
  2. Lee, S. Y. and Lee, J. D., "Electrochemical Characteristics of Silicon/Carbon Anode Materials using Petroleum Pitch," Korean Chem. Eng. Res., 56(4), 561-567(2018). https://doi.org/10.9713/KCER.2018.56.4.561
  3. Zhao, C., Wada, T., De Andrade, V., Gursoy, D., Kato, H. and Chen-Wiegart, Y. C. K.. "Imaging of 3D Morphological Evolution of Nanoporous Silicon Anode in Lithium Ion Battery by X-ray Nano-tomography," Nano Energy, 52, 381-390(2018). https://doi.org/10.1016/j.nanoen.2018.08.009
  4. Yang, T., Tian, X., Li, X., Wang, K., Liu, Z., Guo, Q. and Song, Y., "Double Core-Shell Si@C@SiO2 for Anode Material of Lithium-Ion Batteries with Excellent Cycling Stability," Chem. Eur. J., 23(9), 2165-2170(2017). https://doi.org/10.1002/chem.201604918
  5. Wang, Y. X., Chou, S. L., Kim, J. H., Liu, H. K. and Dou, S. X., "Nanocomposites of Silicon and Carbon Derived from Coal Tar Pitch: Cheap Anode Materials for Lithium-ion Batteries with Long Cycle Life and Enhanced Capacity," Electrochim. Acta, 93, 213-221(2013). https://doi.org/10.1016/j.electacta.2013.01.092
  6. Lee, J. H., Kim, W. J., Kim, J. Y., Lim, S. H. and Lee, S. M., "Spherical Silicon/graphite/carbon Composites as Anode Material for Lithium-ion Batteries," J. Power Sources, 176(1), 353-358(2008). https://doi.org/10.1016/j.jpowsour.2007.09.119
  7. Lee, S. H. and Lee, J. D., "Electrochemical Characteristics of Silicon/Carbon Anode Materials using Petroleum Pitch," Korean Chem. Eng. Res., 56(4), 561-567(2018). https://doi.org/10.9713/KCER.2018.56.4.561
  8. Jo, Y. J. and Lee, J. D., "Electrochemical Performance of Graphite/Silicon/Carbon Composites as Anode Materials for Lithium-ion Batteries," Korean Chem. Eng. Res., 56(3), 320-326(2018). https://doi.org/10.9713/KCER.2018.56.3.320
  9. itirici, M. M., Antonietti, M. and Thomas, A., "A Generalized Synthesis of Metal Oxide Hollow Spheres Using a Hydrothermal Approach," Chem. Mater., 18(16), 3808-3812(2006). https://doi.org/10.1021/cm052768u
  10. Hu, Y. S., Demir-Cakan, R., Titirici, M. M., Muller, J. O., Schlogl, R., Antonietti, M. and Maier, J., "Superior Storage Performance of a Si@SiOx/C Nanocomposite as Anode Material for Lithiumion Batteries," Angew. Chem. Int. Ed., 47(9), 1645-1649(2008). https://doi.org/10.1002/anie.200704287
  11. Shen, T., Xia, X. H., Xie, D., Yao, Z. J., Zhong, Y., Zhan, J. Y., Whang, D. H., Wu, J. B., Wang, X. L. and Tu, J. P., "Encapsulating Silicon Nanoparticles Into Mesoporous Carbon Forming Pomegranate-structured Microspheres as a High-performance Anode for Lithium ion Batteries," J. Mater. Chem. A, 5(22), 11197-11203 (2017). https://doi.org/10.1039/C7TA03294C
  12. Shin, H. J., Hwang, J. Y., Kwon, H. J., Kwak, W. J., Kim, S. O., Kim, H. S. and Jung, H. G., "Sustainable Encapsulation Strategy of Silicon Nanoparticles in Microcarbon Sphere for High-Performance Lithium-Ion Battery Anode," ACS Sustain. Chem. Eng., 8(37), 14150-14158(2020). https://doi.org/10.1021/acssuschemeng.0c04828
  13. Han, Y. J., Hwang, J. W., Kim, K. S., Kim, J. H., Lee, J. D. and Im, J. S., "Optimization of the Preparation Conditions for Pitch Based Anode to Enhance the Electrochemical Properties of LIBs," J. Ind. Eng. Chem., 73, 241-247(2019). https://doi.org/10.1016/j.jiec.2019.01.031
  14. Choi, S. H., Nam, G., Chae, S., Kim, D., Kim, N., Kim, W. S., Ma, J., Sung, J., Han, M. S., Ko, M., Lee, H. W. and Cho, J., "Robust Pitch on Silicon Nanolayer-embedded Graphite for Suppressing Undesirable Volume Expansion," Adv. Energy Mater., 9(4), 1803121 (2019). https://doi.org/10.1002/aenm.201803121
  15. Zheng, M., Liu, Y., Xiao, Y., Zhu, Y., Guan, Q., Yuan, D. and Zhang, J., "An Easy Catalyst-free Hydrothermal Method to Prepare Monodisperse Carbon Microspheres on a Large Scale," J. Phys. Chem. C, 113(19), 8455-8459(2009). https://doi.org/10.1021/jp811356a
  16. Jeong, S., Li, X., Zheng, J., Yan, P., Cao, R., Jung, H. J., Wang, C., Liu, J. and Zhang, J. G., "Hard Carbon Coated Nano-Si/graphite Composite as a High Performance Anode for Li-ion Batteries," J. Power Sources, 329, 323-329(2016). https://doi.org/10.1016/j.jpowsour.2016.08.089
  17. Karkar, Z., Guyomard, D., Roue, L. and Lestriez, B., "A Comparative Study of Polyacrylic Acid (PAA) and Carboxymethyl Cellulose (CMC) Binders for Si-based Electrodes," Electrochim. Acta, 258, 453-466(2017). https://doi.org/10.1016/j.electacta.2017.11.082
  18. Komaba, S., Shimomura, K., Yabuuchi, N., Ozeki, T., Yui, H. and Konno, K., "Study on Polymer Binders for High-capacity SiO Negative Electrode of Li-ion Batteries," J. Phys. Chem. C, 115(27), 13487-13495(2011). https://doi.org/10.1021/jp201691g
  19. Jo, Y. J. and Lee, J. D., "Effect of Petroleum Pitch Coating on Electrochemical Performance of Graphite as Anode Materials," Korean J. Chem. Eng., 36(10), 1724-1731(2019). https://doi.org/10.1007/s11814-019-0354-3
  20. Cakan, R. D., Titirici, M. M., Antonietti, M., Cui, G., Maier, J. and Hu, Y. S., "Hydrothermal Carbon Spheres Containing Silicon Nanoparticles: Synthesis and Lithium Storage Performance," Chem. Commun., 32, 3759-3761(2008).
  21. Zuo, P., Yin, G., Yang, Z., Wang, Z., Cheng, X., Jia, D. and Du, C., "Improvement of Cycle Performance for Silicon/carbon Composite Used as Anode for Lithium ion Batteries," Mater. Chem. Phys., 115(2-3), 757-760(2009). https://doi.org/10.1016/j.matchemphys.2009.02.036
  22. Shen, T., Xia, X. H., Xie, D., Yao, Z. J., Zhong, Y., Zhan, J. Y., and Wang, D. H., Wu, J. B., Wang, X. L. and Tu, J. P., "Encapsulating Silicon Nanoparticles into Mesoporous Carbon Forming Pomegranate-structured Microspheres as a High-performance Anode for Lithium ion Batteries," J. Mater. Chem. A, 5(22), 11197-11203 (2017). https://doi.org/10.1039/C7TA03294C
  23. Li, M., Hou, X., Sha, Y., Wang, J., Hu, S., Liu, X. and Shao, Z., "Facile Spray-drying/pyrolysis Synthesis of Core-shell Structure Graphite/silicon-porous Carbon Composite as a Superior Anode for Li-ion Batteries," J. Power sources, 248, 721-728(2014). https://doi.org/10.1016/j.jpowsour.2013.10.012