DOI QR코드

DOI QR Code

Biological Accessibility to Algae Control through Measurement of Filtration Rate of Three Freshwater Bivalves

담수 이매패류 3종의 여과율 측정을 통한 조류 제어의 생물학적 접근 가능성

  • Received : 2021.02.28
  • Accepted : 2021.03.23
  • Published : 2021.03.31

Abstract

In order to control algal bloom, which causes environmental problems such as eutrophication in freshwater ecological environments, many attempts have recently been made using biological approaches. Among them is filtration using bivalve. Algae control with filter-feeding bivalves is emerging as an eco-friendly method. In this study, bivalves collected at Baekje weir in Geum River in Korea from Jun to Sep 2020 were tested to find out the possibility of algae control using filter-feeding bivalves through laboratory experiments. The Unio douglasiae, Anodonta woodiana, and Anodonta arcaeformis collected from Baekje weir were put into a water tank (2 L) containing Clorella vulgaris, and as a result, the average filtration rate was 95.9% per animal after 24 hrs. Calculating this with the Chl-a concentration converted to a calibration curve, it was found that the average of 154.84 ㎍ L-1 of Chl-a was reduced. Based on this calculation, the possibility that one bivalve can eliminate Chl-a in one month is 0.0005%. It is expected that the effect is 20.14% when there are 40,000 animals. These results indirectly showed how effective bivalve's ability to control Chl-a in their habitat is. Although this study was limited to calculating the algae control ability of aquatic ecosystem based on the filtration rate of bivalve and the corresponding Chl-a reduction rate, it is thought that it will be used as basic data for integrated research from various factors and viewpoints (phytoplankton, aquatic plants, benthic organisms, and sediments) through additional research.

본 연구에서는 2020년 6월에서 9월까지 4개월 동안 우리나라 하천 중 금강 백제보에 주로 서식하는 말조개, 펄조개와 대칭이를 채집하여 서식처 특성을 살펴보았고, 이들의 여과율을 실내 실험을 통하여 측정하여 검량선을 산출하였다. 백제보에서 채집된 말조개, 펄조개, 대칭이는 24시간 동안 평균 154.84 ㎍ L-1의 Chl-a를 제거하였으며, 이는 실내 수조(2 L) 내의 식물플랑크톤 C. vulgaris(초기 Chl-a=168.34 ㎍ L-1)를 약 24시간 만에 제거할 수 있는 것으로 나타났다. 따라서, 본 연구에서 사용한 말조개, 펄조개, 대칭이가 연평균 4만 마리가 서식할 경우(Lee et al., 2020), 6월 한달 동안 예상되는 Chl-a의 저감 효과는 10.55%으로 예측되고 7월의 경우 34.88%, 8월의 경우 20.14%, 9월의 경우 46.21%로 평균 27.94%의 저감 효과를 예상할 수 있다. 이러한 결과는 간접적으로 이매패류가 서식지에서 효과적으로 Chl-a를 제거할 수 있을 가능성을 제시한다. 실제로 이매패류를 통하여 수생태계의 조류 제어능력을 평가하기 위해서는 이매패류뿐만 아니라 식물플랑크톤, 수생식물, 저서생물, 퇴적물, 유속 등의 작용들을 종합적으로 고려해야 하지만 본 연구에서는 이매패류의 여과율과 이에 따른 Chl-a에 저감율에 기반하여 수생태계 조류 제어능력을 산정하였다. 본 연구 결과들은 차후 다양한 요인과 관점에서의 통합된 연구에 기초적인 정보를 제공할 것으로 사료된다.

Keywords

Acknowledgement

K-WATER (2020 K-water 개방형 R&D 과제)와 NRF-2018R1A6A1A03024314 & NRF-2020R1A2C1013936의 지원으로 수행하였다.

References

  1. Chang, K.H., T.H. Kim and J.M. Oh. 2018. Comparative Study on Biological Technology in Artificial Floating Island: Application of Media and Daphnia to Algal Biomass Control. Environmental Impact Assessment 27(1): 83-91.
  2. Chen, L.Y., A.G. Heath and R.J. Neves. 2001. Comparison of oxygen consumption in freshwater mussels (Unionidae) from different habitats during declining dissolved oxygen concentration. Hydrobiologia 450(1-3): 209-214. https://doi.org/10.1023/A:1017501128572
  3. Cho, Y., W.J. Shim, M. Jang, G.M. Han and S.H. Hong. 2021. Nationwide monitoring of microplastics in bivalves from the coastal environment of Korea. Environmental Pollution 270: 116175. https://doi.org/10.1016/j.envpol.2020.116175
  4. Choi, H.S., G.S. Nam, M.S. Kim, H.J. Shin, M.H. Park, S.J. Hwang and B.H. Kim. 2014. Response Surface Methodology for Optimization of the Removal of Organic Matters in Eutrophic Waters by Korean Freshwater Bivalves. Korean Journal of Ecology and Environment 47(4): 312-318. https://doi.org/10.11614/KSL.2014.47.4.312
  5. Dionisio Pires, L.M., B.M. Bontes, E.V. Donk and B.W. Ibelings. 2005. Grazing on colonial and filamentous, toxic and non-toxic cyanobacteria by the zebra mussel Dreissena polymorpha. Journal of Plankton Research 27(4): 331-339. https://doi.org/10.1093/plankt/fbi008
  6. Froese, R. 2006. Cube law, condition factor and weight-length relationships: history, meta-analysis and recommendations. Journal of Applied Ichthyology 22(4): 241-253. https://doi.org/10.1111/j.1439-0426.2006.00805.x
  7. Geba, E., D. Rioult, O. Palluel, O. Dedourge-Geffard, S. Betoulle, D. Aubert and A. Bigot-Clivot. 2021. Resilience of Dreissena polymorpha in wastewater effluent: Use as a bioremediation tool?. Journal of Environmental Management 278: 111513. https://doi.org/10.1016/j.jenvman.2020.111513
  8. Gudimov, A., D.K. Kim, J.D. Young, M.E. Palmer, M. Dittrich, J.G. Winter and G.B. Arhonditsis. 2015. Examination of the role of dreissenids and macrophytes in the phosphorus dynamics of Lake Simcoe, Ontario, Canada. Ecological Informatics 26: 36-53. https://doi.org/10.1016/j.ecoinf.2014.11.007
  9. Han, J.H., W.S. Park, J.H. Kim, Y.S. Lee, J.H. Rho, Y.K. Kim and B.S. Yoon. 2000. The development of algae removal system to minimize the damage of algae bloom on freshwater. Journal of the Korean Society for Marine Environment and Energy 3(1): 62-69.
  10. Hastie, L.C., P.J. Boon and M.R. Young. 2000. Physical microhabitat requirements of freshwater pearl mussels, Margaritifera margaritifera (L.). Hydrobiologia 429(1-3): 59-71. https://doi.org/10.1023/A:1004068412666
  11. Holland, R.E. 1993. Changes in plankton diatoms and water transparency in Hatchery Bay, Bass Island area, western Lake Erie since the establishment of the zebra mussel. Journal of Great Lakes Research 19: 617-624. https://doi.org/10.1016/S0380-1330(93)71245-9
  12. Horner, R.R., E.B. Welch, M.R. Seeley and J.M. Jacoby. 1990. Responses of periphyton to changes in current velocity, suspended sediment and phosphorus concentration. Freshwater Biology 24(2): 215-232. https://doi.org/10.1111/j.1365-2427.1990.tb00704.x
  13. Hwang, S.J., H.S. Kim, J.K. Shin, J.M. Oh and D.S. Kong. 2004. Grazing effects of a freshwater bivalve (Corbicula leana Prime) and large zooplankton on phytoplankton communities in two Korean lakes. Hydrobiologia 515(1-3): 161-179. https://doi.org/10.1023/B:HYDR.0000027327.06471.1e
  14. Jang, Y.J., J.H. Jung, H.M. Lim, Y.H. Yoon, K.H. Ahn, H.Y. Chang and W.J. Kim. 2016. Decision Algorithm of Natural Algae Coagulant Dose to Control Algae from the Influent of Water Works. Korean Society of Environmental Engineers 38(9): 482-496. https://doi.org/10.4491/KSEE.2016.38.9.482
  15. Kang, H., K.E. Na, K.S. Shin and J.H. Jang. 2003. Feasibility Test for Control of Algae by Electron Beam Irradiation in Eutrophic Lake and Coastal Water. Korean Society of Environmental Engineers 25(11): 1368-1374.
  16. Kil, B.S. 1976. Articles: Ecological Studies on the Bivalves of Freshwater in Korea Distribution and Morphological Variation. The Korean society of Limnology 9(3): 29-38.
  17. Kim, B.H., J.H. Lee, Y.J. Kim, S.O. Hwang and S.J. Hwang. 2009. Water Quality Improvement of Pocheon Stream Using Freshwater Bivalves: Development and Operation of Continuous Removal of Organic Matter in Streams(S-CROM). Korean Journal of Ecology and Environment 42(3): 317-330.
  18. Kim, H.S., H. Yang and J.Y. Park. 2013. Host species Preference of Acheilognathus signifer (Pisces: Acheilognathinae) for spawning in Freshwater Mussels. Korean Journal of Ichthyology 25(4): 208-215.
  19. Kim, H.S., J.H. Park, D.S. Kong and S.J. Hwang. 2004. Water Quality Improvement with the Application of Filter-feeding Bivalve (Corbicula leana Prime) in a Eutrophic Lake. The Korean society of Limnology 37(3): 332-343.
  20. Kim, H.S., J.K. Shin and S.J. Hwang. 2001. Filter-feeding effect of a freshwater bivalve (Corbicula leana PRIME) on phytoplankton. Korean Journal of Ecology and Environment 34(4): 298-309.
  21. Kim, J.K., D.G. Kang, W.S. Yeo and H.H. Kim. 2017. Trends in Algae Removal Technology and Eco-Friendly Algae Control Technology. Korean Society of Water Science and Technology 25(1): 91-109. https://doi.org/10.17640/KSWST.2017.25.1.91
  22. Kim, K.H., B.H. Kim, M.H. Park and S.J. Hwang. 2008. Effect of a Freshwater Bivalve (Unio douglasiae) and a Submerged Plant (Potamogeton crispus) on the Growth Inhibition of a Cyanobacterium Oscillatoria sp. Korean Journal of Ecology and Environment 41: 68-76.
  23. Kim, S. and Y.E. Choi. 2016. Eco-friendly Control of Harmful Algal Bloom Species Using Biological Predators. Korean Society of Environmental Biology 34(2): 91-96. https://doi.org/10.11626/KJEB.2016.34.2.091
  24. Kwon, O.G. and J.K. Choi. 1982. Articles: The Studies on the Mollusks in the Lake Uiam(2) The studies of the freshwater mollusks in the Lake Uiam and the swimming out of prelarva fish from mussels. The Korean society of Limnology 15(1): 39-50.
  25. Kwon, O.G., D.K. Min, J.R. Lee, J.S. Lee, J.G. Je and B.R. Choi. 2001. Korean Mollusks with Color Illustration. Min Shell House, Seoul. pp. 1-332.
  26. Le Cren, E.D. 1951. The length-weight relationship and seasonal cycle in gonad weight and condition in the perch (Perca fluviatilis). The Journal of Animal Ecology 20(2): 201-219. https://doi.org/10.2307/1540
  27. Lee, B.J., H.C. Oh, J.H. Ahn, Y.M. Kim, H.J. Kang and S.K. Kim. 2018. Algae and Nutrient Control by Using the Mineralized Coagulant. Korean Society of Water Science and Technology 26(2): 45-52. https://doi.org/10.17640/KSWST.2018.26.2.45
  28. Lee, H.Y., H.S. Kim, J.H. Lee, Y.J. Kim, B.H. Kim, D.H. Won and J.S. Lee. 2020. Precise Monitoring of the Phytoplankton in Weir Area. Ministry of Environment, Sejong, Korea. pp. 1-90.
  29. Lee, S.H., S.J. Hwang and B.H. Kim. 2008a. Grazing Effects of Freshwater Bivalve Unio douglasiae on the Hibernal Diatom Bloom in the Eutrophic Lake and Stream. Korean Journal of Ecology and Environment 41(2): 237-246.
  30. Lee, S.H., S.K. Baik, S.J. Hwang and B.H. Kim. 2009. Comparison of grazing characteristics of a freshwater bivalve Unio douglasiae (Unionidae) on the cold and warm phytoplankton communities in eutrophic lake. Korean Journal of Ecology and Environment 42(1): 115-123.
  31. Lee, Y.J., B.H. Kim, N.Y. Kim, H.Y. Um and S.J. Hwang. 2008b. Effects of temperature, food concentration and shell size on filtering rate and pseudo-feces production of Unio douglasiae on Microcystis aeruginosa. Korean Journal of Limnology 41: 61-67.
  32. Naddafi, R., K. Pettersson and P. Eklov. 2007. The effect of seasonal variation in selective feeding by zebra mussels(Dreissena polymorpha) on phytoplankton community composition. Freshwater Biology 52: 823-842. https://doi.org/10.1111/j.1365-2427.2007.01732.x
  33. Nesemann, H.A., S.U. Sharma, G.O. Sharma and R.K. Sinha. 2005. Illustrated checklist of large freshwater bivalves of the Ganga river system (Mollusca: Bivalvia: Solecurtidae, Unionidae, Amblemidae). Nachrichchtenblatt der Ersten Vorarlberger Malakologischen Gesellschaft 13: 1-51.
  34. Park, K.S., B.H. Kim, H.Y. Um and S.J. Hwang. 2008. Effects of Dissolved Oxygen and Depth on the Survival and Filtering Rate and Pseudofeces Production of a Filter-feeding Bivalve (Unio douglasiae) in the Cyanobacterial Bloom. The Korean Society of Limnology 41: 50-60.
  35. Park, M.S., J.Y. Lee, S.M. Jung, C.K. Park, K. Chang and B.C. Kim. 2012. Effects of Sand Supply and Artificial Floods on Periphyton in the Downstream of a Dam (Yangyang Dam, Korea). Journal of Korean Society on Water Environment 28(3): 418-425.
  36. Petetta, A., G. Bargione, C. Vasapollo, M. Virgili and A. Lucchetti. 2019. Length-weight relationships of bivalve species in Italian razor clam Ensis minor(Chenu, 1843)(Mollusca: Bivalvia) fishery. The European Zoological Journal 86(1): 363-369. https://doi.org/10.1080/24750263.2019.1668066
  37. Petrakis, G. and K.I. Stergiou. 1995. Weight-length relationships for 33 fish species in Greek waters. Fisheries Research 21(3-4): 465-469. https://doi.org/10.1016/0165-7836(94)00294-7
  38. Pires, L.M.D., B.M. Bontes, L. Samchyshyna, J. Jong, E. Van Donk and B.W. Ibelings. 2007. Grazing on microcystinproducing and microcystin-free phytoplankters by different filter-feeders: implications for lake restoration. Aquatic Sciences 69(4): 534-543. https://doi.org/10.1007/s00027-007-0916-z
  39. Pouil, S., A. Hills and T.J. Mathews. 2021. The effects of food quantity, light, and temperature on clearance rates in freshwater bivalves (Cyrenidae and Unionidae). Hydrobiologia 848(3): 1-15. https://doi.org/10.1007/s10750-020-04386-9
  40. Reeders, H.H. and A.B. de Vaate. 1992. Bioprocessing of polluted suspended matter from the water column by the zebra mussel (Dreissena polymorpha Pallas). Hydrobiologia 239(1): 53-63. https://doi.org/10.1007/BF00027529
  41. Rippka, R., J. Deruelles, J.B. Waterbury, M. Herdman and R.Y. Stanier. 1979. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Microbiology 111(1): 1-61. https://doi.org/10.1099/00221287-111-1-1
  42. Ryu, S.M., S.E. Roh, J.H. Sim, D.Y. Bae and Y.J. Yoon. 2017. Distribution and migration study of Cristaria plicata in the Nakdong river. National Institute of Environmental Research, Incheon, Korea. pp. 1-58.
  43. Smit, H. 1992. Colonization, ecology, and positive aspects of zebra mussels (Dreissena polymorpha) in the Netherlands. Zebra mussels: Biology, Impacts, and Control 14(4): 55-77.
  44. Soto, D. and G. Mena. 1999. Filter feeding by the freshwater mussel, Diplodon chilensis, as a biocontrol of salmon farming eutrophication. Aquaculture 171(1-2): 65-81. https://doi.org/10.1016/S0044-8486(98)00420-7
  45. Tantanasarit, C., S. Babel, A.J. Englande and S. Meksumpun. 2013. Influence of size and density on filtration rate modeling and nutrient uptake by green mussel (Perna viridis). Marine Pollution Bulletin 68(1-2): 38-45. https://doi.org/10.1016/j.marpolbul.2012.12.027
  46. Uehlinger, U., B. Kawecka and C.T. Robinson. 2003. Effects of experimental floods on periphyton and stream metabolism below a high dam in the Swiss Alps (River Spol). Aquatic Sciences 65(3): 199-209. https://doi.org/10.1007/s00027-003-0664-7
  47. Vaughn, C.C. and C.C. Hakenkamp. 2001. The functional role of burrowing bivalves in freshwater ecosystems. Freshwater Biology 46(11): 1431-1446. https://doi.org/10.1046/j.1365-2427.2001.00771.x
  48. Wentworth, C.K. 1922. A scale of grade and class terms for clastic sediments. The Journal of Geology 30(5): 377-392. https://doi.org/10.1086/622910