DOI QR코드

DOI QR Code

Comparison of Benthic Macroinvertebrate Communities at Two Headwater Streams Located with Different Temperature Regions in South Korea

온도 분포가 다른 두 산림 하천의 저서성대형무척추동물 군집 특성 비교

  • Received : 2021.06.04
  • Accepted : 2021.06.17
  • Published : 2021.06.30

Abstract

Macroinvertebrates in forest streams affect the overall health of other streams in the same water system. In this study, we compared differences in the benthic macroinvertebrate community at two headwater streams located at different latitudes in the southern and northern parts of South Korea. We calculated the community temperature index (CTI), which represents the thermal preferences of the benthic communities. Hierarchical cluster analyses (HCA) were conducted to compare the similarities among sampling sites. In addition, we analyzed the relationship between community composition and environmental and community characteristics using non-metric multidimensional scaling (NMDS). Our results showed that CTI was significantly different between the two regions, indicating that these benthic macroinvertebrate communities have different thermal preferences. These two regions were clearly distinguished from each other in the HCA; furthermore, seasonal differences in benthic community composition were observed within each region. The functional feeding groups present in the benthic macroinvertebrate communities were different even though their habitat was similar.

유사한 시기에 조사된 다른 위도의 저서성대형무척추동물 군집 구조의 시공간적 차이를 비교한 결과, 평창 조사지역에서는 3문 5강 12목 44과 69분류군 13,042개체, 완도 조사지역에서는 4문 5강 12목 37과 52분류군 8,887개체가 채집되었다. 평창이 완도보다 다양도와 균등도 또한 높게 나타났다. 우점종은 평창에서는 두점하루살이로 나타났고, 완도에서는 길쭉하루살이로 서로 달랐다. 집괴 분석 결과 평창과 완도 조사지역의 군집 특성이 명확하게 나누어졌으며 지역 내에서는 대체로 계절성의 영향이 컸다. 지표종 분석에서는 총 4종의 지표종이 선정되었으며 대체로 해당 조사시기 및 지점에만 나타난 종이 선정되었다. 기능적 군집으로는 주워 먹는 무리인 깔따구류를 제외하였을 때 평창 조사지점에서는 긁어먹는 무리가 가장 많았다. 완도 조사지점에서는 주워 먹는 무리가 가장 많았으며 평창 조사지역에 비해 걸러먹는 무리의 비율이 더 높았다. 군집 온도지수 산출 결과 평창이 9.8℃, 완도가 11.0℃으로 평창의 군집이 더 낮은 온도를 선호하는 것으로 나타났다. 이는 서식지 온도 특성이 저서성대형무척추동물 군집 구성에 크게 영향을 미치고 있음을 반영해 주었다.

Keywords

Acknowledgement

연구를 충실하게 수행할 수 있도록 지원해 주신 국립산림과학원 연구자분들께 감사드립니다.

References

  1. Ab Hamid, S. and C.S.M. Rawi. 2017. Application of aquatic insects (Ephemeroptera, Plecoptera and Trichoptera) in water quality assessment of Malaysian headwater. Tropical Life Sciences Research 28: 143-162. https://doi.org/10.21315/tlsr2017.28.2.11
  2. Bae, M.-J., J.H. Chun, T.-S. Chon and Y.-S. Park. 2016. Spatiotemporal variability in benthic macroinvertebrate communities in headwater streams in South Korea. Water 8: 99. https://doi.org/10.3390/w8030099
  3. Barbour, M.T., J. Gerritsen, B.D. Snyder and J.B. Stribling. 1999. Rapid bioassessment protocols for use in streams and wadeable rivers: periphyton, benthic macroinvertebrates and fish - second edition. U.S. Environmental Protection Agency; Office of Water, Washington, D.C.
  4. Boulton, A.J. 2003. Parallels and contrasts in the effects of drought on stream macroinvertebrate assemblages. Freshwater Biology 48: 1173-1185. https://doi.org/10.1046/j.1365-2427.2003.01084.x
  5. Bowler, D. and K. Bohning-Gaese. 2017. Improving the community-temperature index as a climate change indicator. PLOS ONE 12: e0184275. https://doi.org/10.1371/journal.pone.0184275
  6. Brigham, A.R., W.U. Brigham and A. Gnilka. 1982. Aquatic insects and oligochaetes of North and South Carolina. Midwest Aquatic Enterprises.
  7. Brinkhurst, R.O. and B.G.M. Jamieson. 1971. Aquatic Oligochaeta of the world. University of Toronto Press, Toronto.
  8. Clarke, A., R. Mac Nally, N. Bond and P.S. Lake. 2008. Macroinvertebrate diversity in headwater streams: a review. Freshwater Biology 53: 1707-1721. https://doi.org/10.1111/j.1365-2427.2008.02041.x
  9. Cummins, K.W. and G.H. Lauff. 1969. The influence of substrate particle size on the microdistribution of stream macrobenthos. Hydrobiologia 34: 145-181. https://doi.org/10.1007/BF00141925
  10. Day, P.B., R.D. Stuart-Smith, G.J. Edgar and A.E. Bates. 2018. Species' thermal ranges predict changes in reef fish community structure during 8 years of extreme temperature variation. Diversity and Distributions 24: 1036-1046. https://doi.org/10.1111/ddi.12753
  11. De Caceres, M. and F. Jansen. 2016. indicspecies: Relationship Between Species and Groups of Sites. https://cran.r-project.org/web/packages/indicspecies/index.html.
  12. Devictor, V., R. Julliard, D. Couvet and F. Jiguet. 2008. Birds are tracking climate warming, but not fast enough. Proceedings of the Royal Society B: Biological Sciences 275: 2743-2748. https://doi.org/10.1098/rspb.2008.0878
  13. Dufrene, M. and P. Legendre. 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs 67: 345-366. https://doi.org/10.1890/0012-9615(1997)067[0345:SAAIST]2.0.CO;2
  14. Dunbar, M.J., M. Warren, C. Extence, L. Baker, D. Cadman, D.J. Mould, J. Hall and R. Chadd. 2010. Interaction between macroinvertebrates, discharge and physical habitat in upland rivers. Aquatic Conservation: Marine and Freshwater Ecosystems 20: S31-S44. https://doi.org/10.1002/aqc.1063
  15. Filippi-Codaccioni, O., V. Devictor, Y. Bas and R. Julliard. 2010. Toward more concern for specialisation and less for species diversity in conserving farmland biodiversity. Biological Conservation 143: 1493-1500. https://doi.org/10.1016/j.biocon.2010.03.031
  16. Heino, J., T. Muotka, H. Mykra, R. Paavola, H. Hamalainen and E. Koskenniemi. 2003a. Defining macroinvertebrate assemblage types of headwater streams: implications for bioassessment and conservation. Ecological Applications 13: 842-852. https://doi.org/10.1890/1051-0761(2003)013[0842:DMATOH]2.0.CO;2
  17. Heino, J., T. Muotka and R. Paavola. 2003b. Determinants of macroinvertebrate diversity in headwater streams: regional and local influences. Journal of Animal Ecology 72: 425-434. https://doi.org/10.1046/j.1365-2656.2003.00711.x
  18. Herbst, D.B., S.D. Cooper, R.B. Medhurst, S.W. Wiseman and C.T. Hunsaker. 2018. A comparison of the taxonomic and trait structure of macroinvertebrate communities between the riffles and pools of montane headwater streams. Hydrobiologia 820: 115-133. https://doi.org/10.1007/s10750-018-3646-4
  19. Jacobsen, D., R. Schultz and A. Encalada. 1997. Structure and diversity of stream invertebrate assemblages: the influence of temperature with altitude and latitude. Freshwater Biology 38: 247-261. https://doi.org/10.1046/j.1365-2427.1997.00210.x
  20. Kim, D.-H., T.-S. Chon, G.-S. Kwak, S.-B. Lee and Y.-S. Park. 2016. Effects of land use types on community structure patterns of benthic macroinvertebrates in streams of urban areas in the South of the Korea Peninsula. Water 8: 187. https://doi.org/10.3390/w8050187
  21. Korea Meteorological Administration. 2018. Annual Climatological Report. Korea meteorological administration Press, Seoul
  22. Lee, D.-G., T.W. Umh, J.H. Chun and M.H. Jung. 2004. Plant community classification and characteristics in natural deciduous forest of Mt. Joongwang, Gangwon province. Proceedings of Korean Society of Forest Science 2.
  23. Lee, D.-Y., M.-J. Bae, Y.-S. Kwon, C.W. Park, H.M. Yang, Y. Shin, T.-S. Kwon and Y.-S. Park. 2018. Characteristics of spatiotemporal patterns in benthic macroinvertebrate communities in two adjacent headwater streams. Korean Journal of Ecology and Environment 51: 192-203. https://doi.org/10.11614/KSL.2018.51.2.192
  24. Li, F., N. Chung, M.-J. Bae, Y.-S. Kwon and Y.-S. Park. 2012. Relationships between stream macroinvertebrates and environmental variables at multiple spatial scales: Stream systems and multispatial scales. Freshwater Biology 57: 2107-2124. https://doi.org/10.1111/j.1365-2427.2012.02854.x
  25. Li, F., Y.S. Kwon, M.J. Bae, N. Chung, T.S. Kwon and Y.S. Park. 2014. Potential impacts of global warming on the diversity and distribution of stream insects in South Korea. Conservation Biology 28: 498-508. https://doi.org/10.1111/cobi.12219
  26. Lounibos, L., R. Escher, N. Nishimura and S. Juliano. 1997. Longterm dynamics of a predator used for biological control and decoupling from mosquito prey in a subtropical treehole ecosystem. Oecologia 111: 189-200. https://doi.org/10.1007/s004420050225
  27. Malmqvist, B. 2002. Aquatic invertebrates in riverine landscapes. Freshwater Biology 47: 679-694. https://doi.org/10.1046/j.1365-2427.2002.00895.x
  28. McCune, B., J. Grace and D.L. Urban. 2002. Analysis of Ecological Communities. MjM software design, Gleneden Beach.
  29. Merritt, R.W. and K.W. Cummins. 1996. An introduction to the aquatic insects of North America. Kendall/Hunt Pub. Co.
  30. Meyer, J.L., D.L. Strayer, J.B. Wallace, S.L. Eggert, G.S. Helfman and N.E. Leonard. 2007. The contribution of headwater streams to biodiversity in river networks 1. Journal of the American Water Resources Association 43: 86-103. https://doi.org/10.1111/j.1752-1688.2007.00008.x
  31. Minister of Environment and National Institute of Environmental Research. 2015. Survey and Evaluation Method for River and Stream Ecosystem Health Assessment. MOE, Incheon, Korea.
  32. Moore, A.A. and M.A. Palmer. 2005. Invertebrate biodiversity in agricultural and urban headwater streams: implications for conservation and management. Ecological Applications 15: 1169-1177. https://doi.org/10.1890/04-1484
  33. Oh, C.J., H.C. You, J.S. Park, S.B. Ryu, B.S. Yoon, H.H. Park and S. Lee. 2013. Vascular plants and plant resources in Wan-do arboretum. Proceedings of Korean Institute of Forest Recreation and Welfare 2013: 72-74.
  34. Oksanen, J., F.G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, P.R. Minchin, R.B. O'Hara, G.L. Simpson, P. Solymos, M.H.H. Stevens, E. Szoecs and H. Wagner. 2019. vegan: Community Ecology Package. https://cran.r-project.org/web/packages/vegan/index.html.
  35. Pennak, R.W. 1953. Freshwater invertebrates of the United States. The Ronald Press Company, New York.
  36. Portner, H.O. and A.P. Farrell. 2008. Physiology and climate change. Science 322: 690-692. https://doi.org/10.1126/science.1163156
  37. Quigley, M. 1977. Invertebrates of streams and rivers. Edward Arnold.
  38. R Core Team. 2019. R: A Language and environment for statistical computing. R Foundation for Statistical Computing: Vienna, Austria.
  39. Radwell, A.J. and A.V. Brown. 2008. Benthic meiofauna assemblage structure of headwater streams: density and distribution of taxa relative to substrate size. Aquatic Ecology 42: 405-414. https://doi.org/10.1007/s10452-007-9108-0
  40. Richardson, J.S. and R.J. Danehy. 2007. A synthesis of the ecology of headwater streams and their riparian zones in temperate forests. Forest Science 53: 131-147.
  41. Shannon, C.E. and W. Weaver. 1949. A mathematical theory of communication. University of Illinois Press, Urbana.
  42. Sun, Y., Y. Takemon and Y. Yamashiki. 2020. Freshwater spring indicator taxa of benthic invertebrates. Ecohydrology & Hydrobiology 20: 622-631. https://doi.org/10.1016/j.ecohyd.2019.02.003
  43. Townsend, C.R., S. Doledec, R. Norris, K. Peacock and C. Arbuckle. 2003. The influence of scale and geography on relationships between stream community composition and landscape variables: description and prediction. Freshwater Biology 48: 768-785. https://doi.org/10.1046/j.1365-2427.2003.01043.x
  44. Wipfli, M.S., J.S. Richardson and R.J. Naiman. 2007. Ecological linkages between headwaters and downstream ecosystems: Transport of organic matter, invertebrates, and wood down headwater channels 1. Journal of the American Water Resources Association 43: 72-85. https://doi.org/10.1111/j.1752-1688.2007.00007.x
  45. Yoon, I. 1988. Illustrated encyclopedia of fauna & flora of Korea. Ministry Education, Korea.
  46. Zeleny, D. and A.P. Schaffers. 2012. Too good to be true: pitfalls of using mean E llenberg indicator values in vegetation analyses. Journal of Vegetation Science 23: 419-431. https://doi.org/10.1111/j.1654-1103.2011.01366.x