DOI QR코드

DOI QR Code

Influence of Environmental Characteristics on the Community Structure of Benthic Macroinvertebrates in Stream-type Waterways Constructed at Upper Reaches of Guem River

금강 상류 구간 내 샛강형 수로의 서식환경 특성이 저서성 대형무척추동물 군집 구조에 미치는 영향

  • Received : 2021.03.03
  • Accepted : 2021.03.16
  • Published : 2021.03.31

Abstract

Microhabitat In the upper stream is created by various environment variables such as the bottom substrate and the physicochemical factors, and may influence the distribution of benthic macroinvertebrates. We investigated the bottom substrate and environmental variables influencing the distribution of benthic macroinvertebrate in 26 stream-type waterways established at upper reaches of Geum River. During study period, total 85 families, 160 species, 9305 individuals of benthic macroinvertebrates were recorded. The stream-type waterways, where the bottom substrates consist mainly of pebble (16~64 mm) and cobble (64~256 mm) or with rapid water velocity (more than 0.2 m/s) and high dissolved oxygen (more than 120%), were supported by high species diversity of benthic macroinvertebrate. Hierological cluster analysis and the nonparametric multidimensional scale (NMDS) divided 26 stream-type waterways into a total of three clusters. In Cluster 1, the invertebrate species, such as Branchiura sowerbyi, Cloeon dipterum, Ischnura asiatica, Paracercion calamorum, and Radix auricularia, closely related to aquatic macrophytes, and Chironomidae spp., Limnodrilus gotoi, and Tanypodinae sp. were abundant in waterways, with high coverage of silt and clay as well as high turbidity and total nitrogen. The benthic macroinvertebrate species (Cheumatopsyche brevilineata, Drunella ishiyamana, Dugesia japonica, Ephemera orientalis, Gumaga KUa, Macrostemum radiatum, Potamanthus formosus, Semisulcospira libertine, Stenelmis vulgaris, and Teloganopsis punctisetae) included in Cluster 2 were dominated in sites with high cover rates of pebble and gravel. Cluster 3 was predominantly covered by the Cobbles, was supported by Simulium sp. Such a clear distinction in the study sites means that each stream-type waterways is governed by a clear habitat environment. In the case of some sites with low species diversity, improvement measures are required to restore nature, such as improving the function of inflows and outflows, creating meandering channel, and inducing the settlement of littoral vegetation.

금강 상류지역에 조성된 26개의 샛강형 수로에서 서식처로서 효율성과 보전방안 마련을 위해 하상기질, 환경요인, 저서성 대형무척추동물을 조사하였다. 조사기간 동안, 총 85과 160종 9305개체 m-2의 저서성 대형무척추동물이 출현하였으며, 하상기질이 주로 굵은자갈(Pebble)과 호박돌(Cobble)로 구성되거나 빠른 물 흐름(0.2m s-1 이상)과 높은 용존산소(120% 이상)를 가진 샛강형 수로에서 높은 종다양성이 목격되었다. 유사도 분석(Hierarchical cluster analysis)과 비모수다차원척도법(NMDS)의 결과, 26개의 샛강형 수로는 총 3개의 클러스터로 구분되었다. 클러스터 1에서 아가미지렁이, 연못하루살이, 아시아실잠자리, 등검은실잠자리, 물달팽이 등의 저서성 대형무척추동물종은 수생식물과 관련되었으며, 깔따구류, 실지렁이, 늪깔따구류 등은 하상기질이 진흙(Silt and clay)이며, 탁도와 총인이 높은 샛강형 수로에서 주로 우점하였다. 클러스터 2에 포함된 저서성 대형무척추동물종(꼬마줄날도래, 알통하루살이, 동양하루살이, 털날도래 KUa, 큰줄날도래, 플라나리아, 작은강하루살이, 다슬기, 긴다리여울벌레, 등줄하루살이)들은 굵은자갈(Pebble) 및 가는자갈(Gravel)의 비율이 높고, 유속이 빠른 지역에서 주로 풍부하였다. 클러스터 3은 주로 호박돌(Cobble)로 주로 피복된 지점들이었으며, 먹파리류의 빈도가 높았다. 이와 같이 조사지역의 분명한 구분은 각 샛강형 수로가 명확한 서식환경에 의해 지배된다는 것을 의미한다. 일부 종다양성이 낮은 지점의 경우, 유입·유출부의 기능 개선, 사행조성, 호안부 식생 정착 유도 등의 자연성 회복을 위한 개선 방안이 요구된다.

Keywords

Acknowledgement

본 연구는 국립생태원에서 수행한 환경부 수탁과제 『2018년 금강지역 생태공간 조사 및 평가(NIE-수탁연구-2018-11)』의 지원으로 작성되었습니다.

References

  1. Abdelsalam, K. 2013. Distributional patterns of benthic invertebrates at some meso-habitats of sandy riverbed of a mountain stream in Japan. Egyptian Journal of Aquatic Biology and Fisheries 17: 13-35.
  2. An, C.H., J.S. Han, J.K. Choi and H.G. Lee. 2019. Benthic Macroinvertebrate Community Changes after Impoundment of Yeongju dam in Korea. Korean Journal of Environment and Ecology 33: 515-524 (in Korean). https://doi.org/10.13047/KJEE.2019.33.5.515
  3. Brandl, S.J., W.D. Robbins and D.R. Bellwood. 2015. Exploring the nature of ecological specialization in a coral reef fish community: morphology, diet and foraging microhabitat use. Proceedings of the Royal Society B: Biological Sciences 282: 20151147. https://doi.org/10.1098/rspb.2015.1147
  4. Bray, J.R. and J.T. Curtis. 1957. An ordination of the upland forest communities of southern Wisconsin. Ecological Monographs 27: 325-349. https://doi.org/10.2307/1942268
  5. Casatti, L. 2005. Fish assemblage structure in a first order stream, southeastern Brazil: longitudinal distribution, seasonality, and microhabitat diversity. Biota Neotropica 5: 75-83. https://doi.org/10.1590/S1676-06032005000100009
  6. Chambers, P.A., P. Lacoul, K.J. Murphy and S.M. Thomaz. 2007. Global diversity of aquatic macrophytes in freshwater. In Freshwater animal diversity assessment. Springer, Dordrecht, Netherlands, pp. 9-26.
  7. Choi, J.Y., K.S. Jeong, S.K. Kim, G.H. La, K.H. Chang and G.J. Joo. 2014. Role of macrophytes as microhabitats for zooplankton community in lentic freshwater ecosystems of South Korea. Ecological Informatics 24: 177-185. https://doi.org/10.1016/j.ecoinf.2014.09.002
  8. Choi, J.Y., K.S. Jeong, S.K. Kim and G.J. Joo. 2016. Impact of habitat heterogeneity on the biodiversity and density of the zooplankton community in shallow wetlands (Upo wetlands, South Korea). Oceanological and Hydrobiological Studies 45: 485. https://doi.org/10.1515/ohs-2016-0041
  9. Choi, J.Y. and S.K. Kim. 2020. Responses of rotifer community to microhabitat changes caused by summer-concentrated rainfall in a shallow reservoir, South Korea. Diversity 12: 113. https://doi.org/10.3390/d12030113
  10. Choi, J.Y., S.K. Kim, J.C. Kim and J.H. Yun. 2020. Effect of Microhabitat Structure on the Distribution of an Endangered Fish, Coreoperca kawamebari (Temminck & Schlegel, 1843) in the Geum River, South Korea. Water 12: 1690. https://doi.org/10.3390/w12061690
  11. Christie, H., K.M. Norderhaug and S. Fredriksen. 2009. Macrophytes as habitat for fauna. Marine Ecology Progress Series 396: 221-233. https://doi.org/10.3354/meps08351
  12. Chutter, F.M. 1969. The effects of silt and sand on the invertebrate fauna of streams and rivers. Hydrobiologia 34: 57-76. https://doi.org/10.1007/BF00040323
  13. Crosa, G., E. Castelli, G. Gentili and P. Espa. 2010. Effects of suspended sediments from reservoir flushing on fish and macroinvertebrates in an alpine stream. Aquatic Sciences 72: 85. https://doi.org/10.1007/s00027-009-0117-z
  14. Cummins, K.W. 1962. An evaluation of some techniques for the collection and analysis of benthic samples with special emphasis on lotic waters. The American Midland Naturalist 67: 477-504. https://doi.org/10.2307/2422722
  15. De Moor, F.C., F.M. Chutter and I.J. De Moor. 1986. Drift behaviour and microhabitat selection in the preimaginal stages of Simulium chutteri(Diptera Simuliidae). Hydrobiologia 133: 143-154. https://doi.org/10.1007/BF00031863
  16. Eriksson, P.G. 2001. Interaction effects of flow velocity and oxygen metabolism on nitrification and denitrification in biofilms on submersed macrophytes. Biogeochemistry 55: 29-44. https://doi.org/10.1023/A:1010679306361
  17. Field, J.G., K.R. Clarke and R.M. Warwick. 1982. A practical strategy for analysing multispecies distribution patterns. Marine Ecology Progress Series 8: 37-52. https://doi.org/10.3354/meps008037
  18. Gjelland, K.O., T. Bohn and P.A. Amundsen. 2007. Is coexistence mediated by microhabitat segregation? An in-depth exploration of a fish invasion. Journal of Fish Biology 71: 196-209. https://doi.org/10.1111/j.1095-8649.2007.01678.x
  19. Han, M.S., H.S. Bang, M.H. Kim, M.K. Kim, K.A. Roh, J.T. Lee and Y.E. Na. 2007. The fauna of aquatic invertebrates in paddy field. Korean Journal of Environmental Agriculture 26: 267-273 (in Korean). https://doi.org/10.5338/KJEA.2007.26.3.267
  20. Hansen, J.F. and D.B. Hayes. 2012. Long-term implications of dam removal for macroinvertebrate communities in Michigan and Wisconsin rivers, United States. River Research and Applications 28: 1540-1550. https://doi.org/10.1002/rra.1540
  21. Harrison, S.S., D.C. Bradley and I.T. Harris. 2005. Uncoupling strong predator-prey interactions in streams: the role of marginal macrophytes. Oikos 108: 433-448. https://doi.org/10.1111/j.0030-1299.2005.12189.x
  22. Hill, P.S., T.G. Milligan and W.R. Geyer. 2000. Controls on effective settling velocity of suspended sediment in the Eel River flood plume. Continental Shelf Research 20: 2095-2111. https://doi.org/10.1016/S0278-4343(00)00064-9
  23. Holomuzki, J.R. and T.M. Short. 1988. Habitat use and fish avoidance behaviors by the stream-dwelling isopod Lirceus fontinalis. Oikos 52: 79-86. https://doi.org/10.2307/3565985
  24. Hong, C., W.S. Kim, J.Y. Kim, S.Y. Noh, J.H. Park, J.K. Lee and I.S. Kwak. 2019. Change of benthic macroinvertebrates community composition following summer precipitation variance. Korean Journal of Ecology and Environment, 52: 348-357 (in Korean). https://doi.org/10.11614/KSL.2019.52.4.348
  25. Hong, S.J. and S.W. Cheong. 2020. A Study on the Community Characteristics and Changes of Benthic Macroinvertebrates in the Conservation Area of the Shinbulsan Wetland. Journal of Environmental Science International 29: 1079-1088. https://doi.org/10.5322/JESI.2020.29.11.1079
  26. Hur, J.W., D.S. In, M.H. Jang, H. Kang and K.H. Kang. 2011. Assessment of Inhabitation and Species Diversity of Fish to Substrate Size in the Geum River Basin. Journal of Environmental Impact Assessment 20: 845-856. https://doi.org/10.14249/EIA.2011.20.6.845
  27. Jaccard, P. 1908. Nouvelles recherches sur la distribution florale. Bulletin Society Sciences Naturale 44: 223-270.
  28. Jeon, H.J., C. Hong, M.Y. Song, K.H. Kim, W.O. Lee and I.S. Kwak. 2019. Characteristics of Benthic Macroinvertebrates in Gihwa Stream, Tributary of Dong River, Korea. Korean Journal of Ecology and Environment 52: 105-117 (in Korean). https://doi.org/10.11614/KSL.2019.52.2.105
  29. Jung, K.S. 2011. Odonata Larvae of Korea. Nature and Ecology, Seoul, 399pp (in Korean).
  30. Kang, K.H., C.L. Jang, G.H. Lee and K.S. Jung. 2016. Numerical analysis of the morphological changes by sediment supply at the downstream channel of Youngju dam. Journal of Korea Water Resources Association 49: 693-705 (in Korean). https://doi.org/10.3741/JKWRA.2016.49.8.693
  31. Kang, G.H. and W.S. Lee. 2015. Introduction of Yeongju Multipurpose Dam construction project. Water for Future 48: 63-70 (in Korean).
  32. Kil, H.K., D.G. Kim, S.W. Jung, Y.H. Jin, J.M. Hwang, K.S. Bae and Y.J. Bae. 2010. Impacts of impoundments by low-head and large dams on benthic macroinvertebrate communities in Korean streams and rivers. Korean Journal of Ecology and Environment 43: 190-198 (in Korean).
  33. Kim, H.G., C.S. Yoon and S.W. Cheong. 2018. A Community Characteristic on Benthic Macroinvertebrates and Correlation of Physicochemical Water Quality Factors in Stream of Gaya Mountain. Journal of Wetlands Research 20: 322-329 (in Korean). https://doi.org/10.17663/JWR.2018.20.4.322
  34. Kim, M.C., S.P. Chun and J.K. Lee. 2013. Invertebrates in Korean Freshwater Ecosystems. Geobook, Seoul, 483pp (in Korean).
  35. Kim, S.K. and S.U. Choi. 2017. Computation of composite suitability index for fish and macroinvertebrate species in the Gongneung River. Ecology and Resilient Infrastructure 4: 105-114 (in Korean).
  36. Kong, D., S.H. Son, J.Y. Kim, P. Kim, Y. Kwon, J. Kim, Y.J. Kim, J.K. Min and A.R. Kim. 2017. Estimation of habitat suitability index of fish species in the Gapyeong stream. Journal of Korean Society on Water Environment 33: 626-639 (in Korean). https://doi.org/10.15681/KSWE.2017.33.6.626
  37. Kruskal, J.B. 1964. Non-metric multidimensional scaling: a numerical method. Psychometria 29: 115-129. https://doi.org/10.1007/BF02289694
  38. Kwak, I.S., D.S. Lee, C. Hong and Y.S. Park. 2018. Distribution patterns of benthic macroinvertebrates in streams of Korea. Korean Journal of Ecology and Environment 51: 60-70. https://doi.org/10.11614/KSL.2018.51.1.060
  39. Kwon, S.J., Y.C. Jun and J.H. Park. 2013. Benthic Macroinvertebrates. Nature and Ecology, Seoul, 791pp (in Korean).
  40. Kuemmerlen, M., B. Schmalz, B. Guse, Q. Cai, N. Fohrer and S.C. Jahnig. 2014. Integrating catchment properties in small scale species distribution models of stream macroinvertebrates. Ecological Modelling 277: 77-86. https://doi.org/10.1016/j.ecolmodel.2014.01.020
  41. Lee, H.G. and J.K. Choi. 2014. The Distribution Characteristics of Fish Community by Habitat Type in the Nonsan Stream. Journal of Wetlands Research 16: 303-313 (in Korean).
  42. Lee, S.H., M.J. Lee, E.W. Seo and J.E. Lee. 2017. Analysis of functional habitat groups of benthic macroinvertebrates according to changes in the riverbed. Journal of Environmental Science International 26: 373-380. https://doi.org/10.5322/JESI.2017.26.3.373
  43. Loke, L.H., E. Clews, E.W. Low, C.C. Belle, P.A. Todd, H.S. Eikaas and P.K. Ng. 2010. Methods for sampling benthic macroinvertebrates in tropical lentic systems. Aquatic Biology 10: 119-130. https://doi.org/10.3354/ab00274
  44. Margalef, R. 1958. Information theory in ecology. General Systems bull, University of Louisville, Systems Sic, Ins. 3: 36-71.
  45. McCafferty, W.P. 1981. Aquatic entomology: the fisherman's and ecologist's illustrated guide to insects and their relatives. Science Book International, Boston, USA, 448pp.
  46. Menge, B.A. and J.P. Sutherland. 1987. Community regulation: variation in disturbance, competition, and predation in relation to environmental stress and recruitment. The American Naturalist 130: 730-757. https://doi.org/10.1086/284741
  47. Mueller, M., J. Pander and J. Geist. 2011. The effects of weirs on structural stream habitat and biological communities. Journal of Applied Ecology 48: 1450-1461. https://doi.org/10.1111/j.1365-2664.2011.02035.x
  48. Nakano, D., M. Yamamoto and T. Okino. 2005. Ecosystem engineering by larvae of net-spinning stream caddisflies creates a habitat on the upper surface of stones for mayfly nymphs with a low resistance to flows. Freshwater Biology 50: 1492-1498. https://doi.org/10.1111/j.1365-2427.2005.01421.x
  49. National Institute of Ecology (NIE). 2019. Guideline for the 5th national ecosystem survey. NIE, Seocheon, Korea.
  50. Ocon, C.S. and A.R. Capitulo. 2004. Presence and abundance of Ephemeroptera and other sensitive macroinvertebrates in relation with habitat conditions in pampean streams(Buenos Aires, Argentina). Archiv Fur Hydrobiologie 159: 473-487. https://doi.org/10.1127/0003-9136/2004/0159-0473
  51. Oksanen, J., F.G. Blanchet, R. Kindt, P. Legendre, P.R. Minchin, R.B. O'Hara, G.L. Simpson, P. Solymos, M.H.H. Stevens and H. Wagner. 2015. Package 'Vegan'. Community Ecology Package, Vers. 2.2-1. Available online: http://cran.r-project.org/web/packages/vegan/index.html (accessed on 2-March 2021).
  52. Park, H.C., H.S. Sim, J.H. Jeong, T.H. Kang, H.A. Lee, Y.B. Lee, M.A. Kim, J.G. Kim, S.J. Hong, K.Y. Seol, N.J. Kim, S.H. Kim, N.H. Ahn and C.G. Oh. 2008. A Field Guide to Aquatic Insects of Rural Environments in Korea. National Institute of Agricultural Science and Technology, RDA, 349pp (in Korean).
  53. Pielou, E.C. 1975. Ecological diversity. John Wily & Sons, New York, 165pp.
  54. Renofalt, B.M., A.G. Lejon, M. Jonsson and C. Nilsson. 2013. Long-term taxon-specific responses of macroinvertebrates to dam removal in a mid-sized Swedish stream. River Research and Applications 29: 1082-1089 https://doi.org/10.1002/rra.2592
  55. Rosenfeld, J.S., J. Post, G. Robins and T. Hatfield. 2007. Hydraulic geometry as a physical template for the River Continuum: application to optimal flows and longitudinal trends in salmonid habitat. Canadian Journal of Fisheries and Aquatic Sciences 64: 755-767. https://doi.org/10.1139/f07-020
  56. Schmidt, M.L., B.A. Biddanda, A.D. Weinke, E. Chiang, F. Januska, R. Props and V.J. Denef. 2020. Microhabitats are associated with diversity-productivity relationships in freshwater bacterial communities. FEMS Microbiology Ecology 96: fiaa029. https://doi.org/10.1093/femsec/fiaa029
  57. Shannon, C.E. and W. Weaver. 1949. The mathematical theory of communication. Ph. D. Univ. of Illinois, Urbana, 233pp.
  58. Sih, A., P. Crowley, M. McPeek, J. Petranka and K. Strohmeier. 1985. Predation, competition, and prey communities: a review of field experiments. Annual Review of Ecology and Systematics 16: 269-311. https://doi.org/10.1146/annurev.es.16.110185.001413
  59. Sun, J., J.F. Hamel, B. Stuckless, T.J. Small and A. Mercier. 2020. Effect of light, phytoplankton, substrate types and colour on locomotion, feeding behaviour and microhabitat selection in the sea cucumber Cucumaria frondosa. Aquaculture 526: 735369. https://doi.org/10.1016/j.aquaculture.2020.735369
  60. The Entomological Society of Korea & Korean Society of Applied Entomology. 1994. Check list of insects from Korea, KonKuk University Press, Korea, pp. 5-744 (in Korean).
  61. The Korean Society of Systematic Zoology. 1997. List of animals in Korea (excluding insects), The Korean Society of Systematic Zoology, Korea, pp. 3-489 (in Korean).
  62. Torgersen, C.E., C.V. Baxter, H.W. Li and B.A. McIntosh. 2006. Landscape influences on longitudinal patterns of river fishes: spatially continuous analysis of fish habitat relationships, pp. 473-492. In: Influences of Landscapes on Stream Habitats and Biological Assemblages (Hughes, R.M., L. Wang and P.W. Seelbach, eds.). American Fisheries Society, Bethesda, MD. American Fisheries Society Symposium 48: 473-492.
  63. Townesend, C., S. Doledec and M. Scarsbrook. 1997. Species traits in relation to temporal and spatial heterogeneity in streams: a test of habitat templet theory. Freshwater Biology 37: 367-387. https://doi.org/10.1046/j.1365-2427.1997.00166.x
  64. Wetzel, R.G. and G.E. Likens. 2000. Limnological analyses. Springer, New York, 429pp.
  65. Won, D.H., S.J. Kown and Y.C. Jun. 2005. Aquatic Insects of Korea. Korea Ecosystem Service, Seoul, 415pp (in Korean).
  66. Yang, S.G., Y.C. Cho, H. Yang and E.J. Kang. 2012. Characteristics of fish fauna and community structure in Yongdam reservoir by inhabiting environment changes. Korean Journal of Environmental Biology 30: 15-25 (in Korean).