DOI QR코드

DOI QR Code

육상 기반 해양 폐쇄형 인공생태계를 활용한 해양생태계 위해성 평가: 객관적인 영향 평가 tool 제시

Marine ecosystem risk assessment using a land-based marine closed mesocosm: Proposal of objective impact assessment tool

  • 윤성진 (한국해양과학기술원 울릉도.독도해양연구기지)
  • Yoon, Sung-Jin (Ulleungdo-Dokdo Ocean Science Station, Korea Institute of Ocean Science & Technology)
  • 투고 : 2021.02.22
  • 심사 : 2021.03.11
  • 발행 : 2021.03.31

초록

본 연구에서는 해양생태계 위해성 평가 시 생물학적, 비생물학적 요인에 대한 인공생태계 실험의 초기 안정성을 객관적으로 평가하기 위해 육상 기반 해양 폐쇄형 메조코즘(LMCM) 실험을 수행하였다. 변동계수(CV)의 진폭 변화는 실험의 안정성 분석 자료로 사용하였다. 본 연구에서 LMCM 그룹(200, 400, 600, 1,000 L) 내 비생물학적 실험변수에 대한 CV 값은 20~30% 범위로 유지되었다. 그러나 엽록소-a, 식물플랑크톤 및 동물플랑크톤과 같은 생물학적 요인의 CV 진폭 파이는 600L와 1,000L LMCM 그룹에서 높게 분석되었다. 이와 같은 결과는 실험 초기에 생물학적 변수에 대한 제어가 부족하여 발생한 것으로 해석된다. 또한 ANOVA 분석에 따르면, LMCM 그룹 간 CV 값은 생물학적 요인과 연관된 실험변수들에서 유의한 차이를 보였다(p<0.05). 본 연구에서 생물학적 변수의 안정화는 LMCM 그룹의 크기와 그룹 내 생물의 생태-생리학적 활동의 복잡성을 감안할 때 수질 및 영양염 성분을 제외하면 실험 초기 생물학적 변수의 변동성을 제어하고 유지할 필요가 있으나 현실적으로 어려운 부분이 많았다. 결론적으로 해양에서 과학적 도구로써 인공생태계 실험은 생물학적, 비생물학적 요인을 구분하여 명확한 측정요소(endpoint)를 비교 분석할 수 있는 연구목적 수립, 실험조건의 안정성 유지 및 실험결과를 객관적으로 해석할 수 있는 표준화된 분석 기법의 도입이 필요한 것으로 판단된다.

In this study, a land-based marine closed mesocosm (LMCM) experiment was performed to objectively assess the initial stability of an artificial ecosystem experiment against biological and non-biological factors when evaluating ecosystem risk assessment. Changes in the CV (coefficient of value) amplitude were used as data to analyze the stability of the experimental system. The CV of the experimental variables in the LMCM groups (200, 400, 600, and 1,000 L) was maintained within the range of 20-30% for the abiotic variables in this study. However, the difference in CV amplitude in biological factors such as chlorophyll-a, phytoplankton, and zooplankton was high in the 600 L and 1,000 L LMCM groups. This result was interpreted as occurring due to the lack of control over biological variables at the beginning of the experiment. In addition, according to the ANOVA results, significant differences were found in biological contents such as COD (chemical oxygen demand), chlorophyll-a, phosphate, and zooplankton in the CV values between the LMCM groups(p<0.05). In this study, the stabilization of biological variables was necessary to to control and maintain the rate of changes in initial biological variables except for controllable water quality and nutrients. However, given the complexity of the eco-physiological activities of large-scale LMCMs and organisms in the experimental group, it was difficult to do. In conclusion, artificial ecosystem experiments as a scientific tool can distinguish biological and non-biological factors and compare and analyze clear endpoints. Therefore, it is deemed necessary to establish research objectives, select content that can maintain stability, and introduce standardized analysis techniques that can objectively interpret the experimental results.

키워드

과제정보

본 논문은 한국해양과학기술원 기관목적사업 (PE99913)의 연구비 지원으로 수행하였습니다.

참고문헌

  1. Andersson AJ, DI Kline, PJ Edmunds, SD Archer, N Bedenarsek, RC Carpenter, M Chadsey, P Goldstein, AG Grottoli, TP Hurst, AL King, JE Kubler, IB Kuffner, KRM Mackey, BA Menge, A Paytan, U Riebesell, A Schnetzer, ME Warner and RC Zimmerman. 2015. Understanding ocean acidification impacts on organismal to ecological scales. Oceanography 28:16-27.
  2. Bellworthy J and M Fine. 2018. The red sea simulator: A highprecision climate change mesocosm with automated monitoring for the long-term study of coral reef organisms. Limnol. Oceanogr. Meth. 16:367-375. https://doi.org/10.1002/lom3.10250
  3. Cappello S and MM Yakimov. 2010. Mesocosm for oil simulation. pp. 3513-3521. In: Handbook of Hydrocarbon and Lipid Microbiology (Timmis KN, ed.). Springer-Verlag. Berlin.
  4. Carpenter SR. 1996. Microcosm experiments have limited relevance for community and ecosystem ecology. Ecology 77:677-680. https://doi.org/10.2307/2265490
  5. Conquest LL. 1983. Assessing the statistical effectiveness of ecological experiments: Utility of the coefficient of variation. Int. J. Environ. Stud. 20:209-221. https://doi.org/10.1080/00207238308710037
  6. Crossland NO and TW La Point. 1992. The design of mesocosm experiments. Environ. Toxicol. Chem. 11:1-4. https://doi.org/10.1002/etc.5620110101
  7. De Lafontaine Y and WG Leggett. 1987. Evaluation of in situ enclosures for larval fish studies. Can. J. Fish. Aquat. Sci. 44:54-65. https://doi.org/10.1139/f87-007
  8. Duggan SB, CJ Kotalik and WH Clements. 2018. Integrating results of field biomonitoring and mesocosm experiments to validate postspill impacts of petroleum hydrocarbons on stream benthic communities. Environ. Sci. Technol. 52:13584-13590. https://doi.org/10.1021/acs.est.8b04807
  9. Falkenberg LJ, BD Russel and SD Connell. 2016. Design and performance evaluation of a mesocosm facility and techniques to simulate ocean acidification and warming. Limnol. Oceanogr. Meth. 14:278-291. https://doi.org/10.1002/lom3.10088
  10. Giddings JM and GK Eddlemon. 1979. Some ecological and experimental properties of complex aquatic microcosms. Int. J. Environ. Stud. 13:119-123. https://doi.org/10.1080/00207237908709812
  11. Giesy JP and PM Allred. 1985. Mutispecies Toxicity Testing. pp. 18-24. In: Replicability of Aquatic Multispecies Test Systems (Cairns J, ed.). Pergamon Press. New York.
  12. Harris RML, PD Armitage, AM Milner and M Ledger. 2007. Replicability of physiochemistry and macroinvertebrate assemblages in stream mesocosms: implications for experimental research. Freshw. Biol. 52:2434-2443. https://doi.org/10.1111/j.1365-2427.2007.01839.x
  13. Kim JH, EJ Kang, KY Kim and KY Kim. 2018. A continuous-flow on-site mesocosm for ocean acidification experiments on benthic organisms. Algae 33:359-366. https://doi.org/10.4490/algae.2018.33.11.10
  14. Kraufvelin P. 1998. Model ecosystem replicablility challenged by the "soft" reality of a hard bottom mesocosm. J. Exp. Mar. Biol. Ecol. 222:247-267. https://doi.org/10.1016/S0022-0981(97)00143-3
  15. Kraufvelin P. 1999. Baltic hard bottom mesocosms unplugged: replicability, repeatability and ecological realism examined by non-parametric multivariate techniques. J. Exp. Mar. Biol. Ecol. 240:229-258. https://doi.org/10.1016/S0022-0981(99)00061-1
  16. Lee IC, HE Woo, KM Kim, JH Lee and KH Kim. 2018. A study on changes in pore water quality of polluted sediment due to mixing ratio of granulated coal ash. J. Korean Soc. Coast. Ocean Eng. 30:201-206. https://doi.org/10.9765/KSCOE.2018.30.5.201
  17. Lehtinen KJ, K Mattsson, J Tana, C Grotell and C Engstrom. 1998. Effects on ecosystem structure and function of fish farming as simulated in littoral brackish water mesocosms. Aquaculture 165:179-202. https://doi.org/10.1016/S0044-8486(98)00253-1
  18. Louvado A, FJRC Coelho, V Oliveira, H Gomes, DFR Cleary, MMQ Simoes, A Cunha and NCM Gomes. 2019. Microcosm evaluation of the impact of oil contamination and chemical dispersant addition on bacterial communities and sediment remediation of an estuarine port environment. J. Appl. Microbiol. 127:134-149. https://doi.org/10.1111/jam.14261
  19. MLTM. 2008. Marine environment standard test method. Ministry of Land Transport and Maritime Affairs. p. 516.
  20. Pages JF, M Perez and J Romero. 2010. Sensitivity of the seagrass Cymodoceanodosa to hypersaline conditions: A microcosm approach. J. Exp. Mar. Biol. Ecol. 386:34-38. https://doi.org/10.1016/j.jembe.2010.02.017
  21. Pansch C and C Heibenthal. 2019. A new mesocosm system to study the effects of environmental variability marine species and communities. Limnol. Oceanogr. Meth. 17:145-162. https://doi.org/10.1002/lom3.10306
  22. Parent S and A Morin. 2000. N budget as water quality management tool in closed aquatic mesocosms. Water Res. 34:1846-1856. https://doi.org/10.1016/S0043-1354(99)00343-7
  23. Passarelli MC, I Riba, A Cesar, A Newton and TA del Valles. 2018. Using a mesocosm approach to evaluate marine benthic assemblage alteration associated with CO2 enrichment in coastal environments. Ecotox. Environ. Safe. 157:29-39. https://doi.org/10.1016/j.ecoenv.2018.03.049
  24. Pratt JR and NJ Browers. 1992. Variability of community metrics: Detecting change in structure and function. Environ. Toxicol. Chem. 11:451-457. https://doi.org/10.1002/etc.5620110402
  25. Raygosa-Barahona RR, S Putzeys, J Herrera and D Pech. 2019. Technical note: Low mesocosms design for studies of tropical marine environments. Biogeosci. Discuss. (preprint) https://doi.org/10.5194/bg-2019-59.
  26. Ryu SH and IC Lee. 2018. Estimation of nutrient mass balance in a Phragmites australis community in Jindo through a mesocosm experiment. J. Korean Sco. Mar. Environ. Safe. 24:545-552. https://doi.org/10.7837/kosomes.2018.24.5.545
  27. Sanchis J, M Llorca, M Olmos, GF Schirinzi, C Bosch-Orea, E Adad, D Barcelo and M Farre. 2018. Metabolic responses of Mytilus galloprovincialis to fullerences in mesocosm exposure experiments. Environ. Sci. Technol. 52:1002-1013. https://doi.org/10.1021/acs.est.7b04089
  28. Schindler DW. 1998. Replication versus realism: The need for ecosystem-scale experiments. Ecosystems 1:323-334. https://doi.org/10.1007/s100219900026
  29. Sharma KV, B Kumar and SR Marigoudar. 2021. A review of mesocosm experiments on heavy metals in marine environment and related issues of emerging concerns. Environ. Sci. Pollut. Res. 28:1-13. https://doi.org/10.1007/s11356-020-11060-z
  30. Sim JH, JN Kwon, JM Park and SN Kwak. 2013. The effects of ocean acidification on early growth of juvenile oliver flounder (Paralichthys olivaceus): in suit mesocosm experiemt. Korean J. Environ. Biol. 31:353-361. https://doi.org/10.11626/KJEB.2013.31.4.353
  31. Sommer U, N Aberle, A Engel, T Hansen, K Lengfellner, M Sandow, J Wohlers, E Zollner and U Riebesell. 2007. An indoor mesocosm system to study the effect of climate change on the late winter and spring succession of Naltic Sea phytoand Zooplankton. Oecologia 154:665-667.
  32. Sorf M, Z Brandl, P Znachor and M Vasek. 2013. Floating largevolume mesocosms as a simple, low-coast experimental design suitable for the variety of lakes and reservoir. Fundam. Appl. Limnol. 183:41-48. https://doi.org/10.1127/1863-9135/2013/0364
  33. Stewart RIA, M Dossena, DA Bohan, E Jeppesen, RL Kordas, ME Ledger, M Meerhoff, B Moss, C Mulder, JB Shurin, B Suttle, R Thompson, M Trimmer and G Woodward. 2013. Mesocosm experiments as a tool for ecological climate-change research. pp. 71-181. In: Advances in Ecological Research (Woodward G and EJ O'Gorman, eds.). Academic Press. Amsterdam.
  34. Trepanier C, S Parent, Y Comeau and J Bouvrette. 2002. Phosphorus budget as a water quality management tool for closed aquatic mesocosms. Water Res. 36:1007-1017. https://doi.org/10.1016/S0043-1354(01)00286-X
  35. Tsiaras KP, S Christodoulaki, G Petihakis, C Frangoulis and G Triantafyllou. 2017. Model simulations of a mesocosm experiment investigating the responses of a low nutrient low chlorophyll (LNLC) marine ecosystem to atmospheric deposition events. Front. Mar. Sci. 4:1-19.
  36. Watts MC and GR Bigg. 2001. Modelling and the monitoring of mesocosm experiments: two case studies. J. Plankton Res. 23:1081-1093. https://doi.org/10.1093/plankt/23.10.1081
  37. Yang JS and YH Jeong. 2011. Mesocosm as a scientific tool for marine science: Focused on the soft-bottom environment. J. Kor. Soc. Mar. Environ. Engineer. 14:93-106.
  38. Yoon SJ and GS Park. 2012. Microcosm approach for brine impact assessment from seawater desalination on benthic assemblages. Desalin. Water Treat. 43:102-112. https://doi.org/10.1080/19443994.2012.672033
  39. Yoon SJ. 2021. Critical low temperature and response of behavioral tolerance in red seabream Pagrus major fingerlings exposed to cold shock. J. Korea Acad. Indust. Coop. Soc. 22:575-584. https://doi.org/10.5762/KAIS.2021.22.1.575