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Abstract
Most graphical representation methods for two-dimensional contingency tables are based on the frequencies,

probabilities, association measures, and goodness-of-fit statistics. In this work, a method is proposed to represent
the correlation coefficients for each of the two selected levels of the row and column variables. Using the corre-
lation coefficients, one can obtain the vector-matrix that represents the angle corresponding to each cell. Thus,
these vectors are represented as a unit circle with angles. This is called a CC plot, which is a correlation plot for
a contingency table. When the CC plot is used with other graphical methods as well as statistical models, more
advanced analyses including the relationship among the cells of the row or column variables could be derived.
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1. Introduction

There exist many graphical representation methods for a categorical data. Some methods express the
frequencies and probabilities of each cell such as the bar chart, pie chart, and star chart for one cate-
gorical variable. For a 2×2 contingency table, Fienberg (1975) proposed the four-fold circular display.
Other graphical representations that can be applied to a two-dimensional categorical data include the
block chart, mosaic plot (Hartigan and Kleiner, 1981, 1984; Friendly, 1992, 1994), association plot
(Cohen, 1980; Friendly, 1991), grouped bar graph (Tufte, 1985), grouped dot plot and framed rectan-
gle chart (Cleveland and McGill, 1984), trellis display (Becker et al., 1996), and the diamond graph
(Li et al., 2003), etc.

There are also other kinds of graphical methods to represent the relationships and fitting of the
statistical models of their categorical variables. Fienberg (1968) and Fienberg and Gilbert (1970)
proposed a method to geometrically represent the association measure using a tetrahedron for a 2 ×
2 contingency table. Tukey (1977) suggested the two-way plot that represents the goodness-of-fit
(GOF) for a two-dimensional contingency table. Darroch et al. (1980) developed graphical models
that could describe an independent model and a conditional independent model for multidimensional
contingency tables. There are two other methods that are based on the odds ratios and their confidence
intervals for 2 × 2 contingency tables: the contour plot (Doi et al., 2001; Yamamoto and Doi, 2001)
and the raindrop plot (Barrowman and Myers, 2000, 2003). Moreover, Hong et al. (1999) proposed
graphical methods to describe the relationship among the GOFs of the hierarchical log-linear models
by constructing a right-angled triangle plot and a polyhedron plot.

There are other graphical methods to display the relations of the correlation coefficients. Corsten
and Gabriel (1976) extended the biplot of Gabriel (1971) and proposed the h-plot to express the
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correlation coefficients as angles. Gower and Hand (1996) have extended and generalized the ideas of
Gabriel. Trosset (2005) later proposed a correlation diagram using the cosine function of the angles.
The correlation diagram represents a correlation coefficient matrix using a set of points on a unit
circle. Pittelkow and Wilson (2005) developed the GE biplot using the biplot approaches to represent
the relationships between the genes and samples. Park et al. (2008) compared the performance of
the principal component analysis biplot, factor analysis biplot, multidimensional scaling biplot, and
correspondence analysis biplot by analyzing various types of gene expression data. Hong and Lee
(2006) suggested the G2-plot that contains information about each log-linear model and all possible
pairs of the hierarchical log-linear models using the ideas of the correlation diagram introduced by
Trosset (2005).

For the two dimensional I × J contingency table, there are many graphical representation methods
including the correspondence analysis. The correspondence analysis method explores the relationship
of variables by simultaneously displaying the row and column categories of contingent table data
based on the multidimensional reduction (scaling) method. Most of these methods are based on the
frequencies, probabilities, and relationships of the statistical models. Even though there are some
statistics to measure the association of categorical variables, it is not easy to find graphical methods
to represent the relation of the measure of association. In this paper, a graphical method is proposed
based on the correlation coefficients of each cell for a two-dimensional contingency table.

Section 2 defines the correlation coefficient for each of the two selected levels of the row and
column variables of a I × J contingency table. One can then obtain a I(I − 1) × J(J − 1) correlation
coefficient matrix. In Section 3, the I×J vector matrix can be found based on the correlation coefficient
matrix by extending the ideas of the correlation diagram of Trosset (2005). Each element in the vector
matrix can express an angle corresponding to each cell, so that a correlation plot for the correlation
coefficient matrix is represented on a unit circle with angles. This is called the CC plot. The CC plots
are explored for various 2×2 and 3×3 contingency tables. Some characteristics obtained from the CC
plots are derived. An empirical 4 × 4 contingency table is discussed in Section 4. We explain that the
CC plot can be expanded for a high-dimensional contingency table in Section 5. Section 6 summarizes
the conclusions of this study.

2. Correlation coefficients for a contingency table

For a I × J contingency table, a partial 2 × 2 contingency table can be considered for the two selected
levels of row and column variables, which for example are the i and i

′th (i , i
′

) levels of the row and
the j and j

′th ( j , j
′

) levels of the column. The correlation coefficient ρi ji′ j′ for the each of the two
selected levels of the row and column can then be defined as

ρi ji′ j′ =
pi′ j′ − pi′+ p+ j′

√pi+ pi′+ p+ j p+ j′
=

pi j pi′ j′ − pi j′ pi′ j
√pi+ pi′+ p+ j p+ j′

,

where pi+ = pi j + pi j′ and p+ j = pi j + pi′ j. The correlation coefficient for each of the two selected
levels of the row and column from a I × J contingency table exhibits the following properties:

(1) The value is invariant when both order of two levels of row and column variables are exchanged
together, i.e., ρi ji′ j′=ρi′ j′ i j.

(2) The sign of the value is reversed when the order of the levels of either row or column is exchanged,
i.e., ρi ji′ j′=−ρi′ ji j′=−ρi j′ i′ j.
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This can be summarized as ρi ji′ j′ = ρi′ j′ i j = −ρi′ ji j′ = −ρi j′ i′ j. For a I × J contingency table
(I ≥ 3, J ≥ 3), one obtains a I(I − 1) × J(J − 1) correlation coefficient matrix, which is denoted
as P = (ρi ji′ j′ ). Nonetheless, it is enough to say that for a 2 × 2 contingency table, there exists one
correlation coefficient since ρ1122 = ρ2211 = −ρ1221 = −ρ2112. Hence, the correlation coefficient is
represented as a scalar for a 2 × 2 table.

3. Correlation plot for the correlation coefficients matrix

The correlation diagram of Trosset (2005) is proposed to visualize a p × p correlation coefficient
matrix P = (ρi j) on a unit circle. The p vectors on a unit circle are represented with the vector
θ = (θ1, θ2, . . . , θp), whose element is the corresponding angle to satisfy the optimization problem for
the following objective function.

min 2
∑
i< j

[
cos(θi − θ j) − ρi j

]2
. (3.1)

Trosset (2005) used the S-Plus function, nlminb, which is a quasi-Newtonian algorithm developed by
Gay (1983, 1984), to minimize the optimization problem in (3.1).

In this work, using the I(I − 1) × J(J − 1) correlation coefficient matrix P = (ρi ji′ j′ ) obtained in
Section 2, one can find the IJ vector-matrix θ = (θi j) that expresses the I × J angles corresponding to
each correlation coefficient in P to solve the following objective function.

min
I∑

i,i′

J∑
j, j′

[
cos(θi j − θi′ j′ ) − ρi ji′ j′

]2
. (3.2)

Since ρi ji′ j′ has a value from -1 to 1, the value of θi j belongs to (0, 2π) so that the I × J elements in
the vector-matrix can be represented on a unit circle with angles θi j. We call this correlation plot for
the correlation coefficients matrix obtained from the contingency table as the CC plot.

If the correlation coefficient, ρi ji′ j′ , has a positive and large value close to 1.0, this means that the
difference between the two vectors, θi j − θi′ j′ , is close to 0.0 degree, so that two vectors θi j and θi′ j′

locate closely. On the other hand, when the correlation coefficient has a negative and large value close
to –1.0, the difference between the two vectors is almost 180 degrees, and the two vectors are located
opposite each other. Also, if the correlation coefficient, ρi ji′ j′ , is close to 0.0, it means that the value
of the difference between the two vectors, θi j − θi′ j′ , is close to 90 degrees, and the angle between θi j

and θi′ j′ is close to a right angle (90 degrees).

3.1. 2 × 2 contingency table

Consider a 2 × 2 contingency table. The objective function with I = J = 2 in (3.2) is then equal to[
cos(θ11−θ22) − ρ1122

]2
+

[
cos(θ12−θ21) − ρ1221

]2
+

[
cos(θ21−θ12) − ρ2112

]2
+

[
cos(θ22−θ11) − ρ2211]2

]
= 2 ×

{ [
cos(θ11 − θ22) − ρ1122

]2
+

[
cos(θ12 − θ21) − ρ1221

]2 }
.

Setting θ11 = 0 as an initial value, we then obtain θ22 = cos−1(ρ1122) and θ12− θ21 = cos−1(−ρ1122),
which implies that θ12 = −θ21 = cos−1(ρ1122)/2 since ρ1122 = −ρ1221 = −ρ2112. For example. if
ρ1122 = 0.2588, then θ22 = 75◦ and θ12 = −θ21 = 105◦/2 = 52.5◦. If ρ1122 = 0.9063, then θ22 = 25◦ and
θ12 = −θ21 = 155◦/2 = 77.5◦. And if ρ1122 = −0.8660, then θ22 = 150◦ and θ12 = −θ21 = 30◦/2 = 15◦.
Three CC plots for this example are displayed in Figure 1.
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(a) (b) (c)

Figure 1: CC plots for the 2 × 2 contingency tables.

When a correlation coefficient ρ1122 has a positive and large value, one can find from Figure 1(b)
that the vector θ22 is located close to the vector θ11 = 0, and both the vectors −θ12 and θ21 are located
between 0 and θ22. When a correlation coefficient ρ1122 has a negative and large value, it is found
from Figure 1(c) that both the vectors −θ12 and θ21 are located between 0 and θ22, but the vector θ22
is located far away from θ11 = 0. Moreover, we could say that the vector θ22 in Figure 1(a) is located
between those in Figure 1(b) and Figure 1(c), since a correlation coefficient ρ1122 has a positive but
small value.

3.2. 3 × 3 contingency table

Consider four 3 × 3 contingency tables in Table 1. The first and second tables show strong positive
and negative relations and the third and fourth tables display two different odd relationships. It is then
easy to obtain four correlation coefficient matrices

P =



ρ1122 ρ1123 ρ1221 ρ1223 ρ1321 ρ1322
ρ1132 ρ1133 ρ1231 ρ1233 ρ1331 ρ1332
ρ2112 ρ2113 ρ2211 ρ2213 ρ2311 ρ2312
ρ2132 ρ2133 ρ2231 ρ2233 ρ2331 ρ2332
ρ3112 ρ3113 ρ3211 ρ3213 ρ3311 ρ3312
ρ3122 ρ3123 ρ3221 ρ3223 ρ3321 ρ3322


.

(a)



0.74 0.61 −0.74 −0.02 −0.61 0.02
0.45 0.91 −0.45 0.61 −0.91 −0.61
−0.74 −0.61 0.74 0.02 0.61 −0.02
−0.22 0.45 0.22 0.74 −0.45 −0.74
−0.45 −0.91 0.45 −0.61 0.91 0.61

0.22 −0.45 −0.22 −0.74 0.45 0.74


(b)



0.02 −0.61 −0.02 −0.74 0.61 0.74
−0.61 −0.91 0.61 −0.45 0.91 0.45
−0.02 0.61 0.02 0.74 −0.61 −0.74
−0.74 −0.45 0.74 0.22 0.45 −0.22

0.61 0.91 −0.61 0.45 −0.91 −0.45
0.74 0.45 −0.74 −0.22 −0.45 0.22



(c)



0.46 0.08 −0.46 −0.27 −0.08 0.27
0.43 0.48 −0.43 0.08 −0.48 −0.08
−0.46 −0.08 0.46 0.27 0.08 −0.27
−0.04 0.43 0.04 0.46 −0.43 −0.46
−0.43 −0.48 0.43 −0.08 0.48 0.08

0.04 −0.43 −0.04 −0.46 0.43 0.46


(d)



0.46 0.43 −0.46 −0.04 −0.43 0.04
0.08 0.48 −0.08 0.43 −0.48 −0.43
−0.46 −0.43 0.46 0.04 0.43 −0.04
−0.27 0.08 0.27 0.46 −0.08 −0.46
−0.08 −0.48 0.08 −0.43 0.48 0.43

0.27 −0.08 −0.27 −0.46 0.08 0.46


The 3×3 vector-matrices θ could also be obtained to solve the optimization problem in (3.2) using
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Table 1: Four 3 × 3 contingency tables

a b c d 30 5 1
4 30 5
2 4 30


 1 5 30

5 30 4
30 4 2


 30 2 1

27 30 2
29 27 30


 30 27 29

2 30 27
1 2 30



(a) (b)

(c) (d)

Figure 2: CC plots for the 3 × 3 contingency tables.

a quasi-Newtonian algorithm such as the nlminb. Setting θ11 = 0 as an initial value.

(a)

 0◦ 13◦ 295◦

149◦ 36◦ 287◦

127◦ 58◦ 64◦

 (b)

 0◦ 282◦ 295◦

9◦ 259◦ 147◦

231◦ 238◦ 169◦

 (c)

 0◦ 190◦ 272◦

339◦ 334◦ 290◦

55◦ 51◦ 281◦

 (d)

 0◦ 339◦ 55◦

190◦ 334◦ 51◦

272◦ 290◦ 281◦


Figure 2 shows the four CC plots for the four correlation coefficient matrices. Now we explore

the relations between Table 1 and Figure 2. Table 1(a) exhibits a strong and positive relation. The CC
plot in Figure 2(a) tells that the diagonal vector set (θ11, θ22, θ33) have similar values but each of the
three vector pairs (θ12, θ21), (θ13, θ31), and (θ23, θ32) is located opposite each other. In other words, the
diagonal cells (1, 1), (2, 2), and (3, 3) have a positive relation but the three pairs of cells ((1, 2), (2, 1)),
((1, 3), (3, 1)), and ((2, 3), (3, 2)) that are facing each other around the diagonal cells have negative
relations.
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Table 1(b) has a strong but negative relation. The CC plot in Figure 2(b) shows that another diag-
onal vector set (θ13, θ22, θ31) have similar values but each of the three vector pairs (θ11, θ33), (θ12, θ23),
and (θ21, θ32) is located on the opposite side of each other. In other words, the diagonal cells (1, 3),
(2, 2), and (3, 1) have a positive relation but the three pairs of cells ((1, 1), (3, 3)), ((1, 2), (2, 3)), and
((2, 1), (3, 2)) that are facing each other around the other diagonal cells have negative relations.

The diagonal cells of Table 1(c) and Table 1(d) have large and analog values. However, the cells
under the diagonal of Table 1(c) and those over the diagonal of Table 1(d) have also large values.
Hence, the three vectors (θ11, θ22, θ33) are observed to be located closely from the CC plots in Fig-
ure 2(c) and (d). One can say that the (1, 1), (2, 2), and (3, 3) diagonal cells have positive but weak
relations.

From the CC plot in Figure 2(c), the vector set (θ21, θ31, θ32) whose vectors correspond to under
the diagonal has similar values and are located close to the vectors θ11 and θ22. However, among θ12,
θ13 and θ23 vectors that belong to above the diagonal cells, both vectors θ13 and θ23 have similar values
and are located close to vector θ33 but vector θ12 is located far away from θ11. It is found that the (2, 1),
(3, 1), and (3, 2) cells that are under the diagonal have strong and positive relations with the (1, 1) and
(2, 2) cells. On the other hand, among the (1, 2), (1, 3), and (2, 3) cells that are over the diagonal, the
(1, 3) and (2, 3) cells have similar relations, while the (1, 2) cell has a strong but negative relation with
(1, 1) cell.

It is evident that the diagonal cells and above the diagonal cells in Table 1(d) have large frequen-
cies, opposite that of Table 1(c). From the CC plot in Figure 2(d), the vector set (θ12, θ13, θ23) whose
vectors are over the diagonal has similar values and are located close to the vectors θ11 and θ22. How-
ever, among θ21, θ31, and θ32 vectors that belong to under the diagonal cells, both the vectors θ31 and
θ32 have similar values and are located close to vector θ33, but the vector θ21 is located far away from
θ11. Hence, it is found that the (1, 2), (1, 3), and (2, 3) cells that are over the diagonal have strong and
positive relations with the (1, 1) and (2, 2) cells. On the other hand, among the (2, 1), (3, 1), and (3, 2)
cells that are under the diagonal, the (3, 1) and (3, 2) cells have similar relations, while the (2, 1) cell
has a strong but negative relation with (1, 1) cell.

Therefore, we might derive some characteristics from the CC plots in Figure 1. The (i, j) cells have
positive relations when the corresponding vectors θi j have similar values. On the other hand, the (i, j)
cells have negative relations with others when the corresponding vectors θi j are close to 180 degrees
from the other vectors.

• Positive relations are found in

1. The diagonal cells (1, 1), (2, 2), and (3, 3) in Figure 2(a),

2. The other diagonal cells (1, 3), (2, 2), and (3, 1) in Figure 2(b),

3. The diagonal cells (1, 1), (2, 2), and (3, 3) in Figure 2(c) and (d) but weak relations,

4. The cells under the diagonal with the (1, 1) and (2, 2) cells in Figure 2(c),

5. The cells over the diagonal with the (1, 1) and (2, 2) cells in Figure 2(d).

• Negative relations are found in

1. Three pairs of cells ((1, 2), (2, 1)), ((1, 3), (3, 1)), and ((2, 3), (3, 2)) in Figure 2(a),

2. Three pairs of cells ((1, 1), (3, 3)), ((1, 2), (2, 3)), and ((2, 1), (3, 2)) in Figure 2(b),

3. The (1, 2) cell with (1, 1) cell in Figure 2(c) with strong relation,

4. The (2, 1) cell with (1, 1) cell in Figure 2(d) with strong relation.
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Table 2: Job satisfaction data

Job satisfaction
Income($) Very Little Moderately Very

dissatisfied dissatisfied satisfied satisfied

< 6, 000 20 24 80 82
(14.2) (24.7) (72.9) (94.2)

6,000–15,000 22 38 104 125
(19.9) (34.6) (102.3) (132.5)

15,000–25,000 13 28 81 113
(16.2) (28.2) (83.2) (107.5)

> 25, 000 7 18 54 92
(11.8) (20.5) (60.5) (78.2)

Figure 3: CC plot for Table 2.

4. Correlation plot for an illustrated example

Consider a 4× 4 contingency table in Table 2 with the income and job satisfaction variables (Norušis,
1988). The independent model is accepted for this data so that the income variable is independent of
the job satisfaction variable (Hong, 1995). However, the linear–by-linear uniform association model
is fitted better than the independent model (Hong, 1995). Therefore, it is found that the two variables
have a linear relation.

Based on the correlation coefficient matrix (the description of the matrix is omitted since it is a
12×12 matrix), the vector-matrix, θ, from Table 2 is obtained and the CC plot is represented in Figure
3 using the vector-matrix.

θ =


0◦ 359◦ 2◦ 175◦

85◦ 274◦ 87◦ 93◦

231◦ 43◦ 45◦ 45◦

308◦ 318◦ 317◦ 323◦


Let us take a look at the vectors corresponding to the row variable in Figure 3. The four vector

sets (θ11, θ12, θ13), (θ21, θ23, θ24), (θ32, θ33, θ34), and (θ41, θ42, θ43, θ44) have similar values. The income
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Table 3: Deceased person data

Year Speed limit Road condition
Main road Secondary road

2010 Restrict 8 42
Free 57 106

2011 Restrict 11 37
Free 45 69

variable I = 1 (lowest level) has relations with the job satisfaction levels J = 1, 2, 3 (very dissatisfied,
little dissatisfied, moderately satisfied), while the income variable I = 4 (highest level) has relations
with all levels of the job satisfaction. On the other hand, the income variable I = 2 (low level) has
relations with the job satisfaction levels J = 3, 4 (moderately satisfied, very satisfied), and the income
variable I = 3 (high level) has relations with the job satisfaction level J = 2, 3, 4 (little dissatisfied,
moderately satisfied, very satisfied). Hence, those whose incomes belong to either very low or very
high levels are neither dissatisfied nor satisfied with their job. Nonetheless, for middle income levels
(low or high levels), the related job satisfaction levels are moderately satisfied and very satisfied levels
excluding the very dissatisfaction level.

The vectors corresponding to the column variable are then considered. The two vector sets (θ12, θ22,
θ32, θ42) and (θ13, θ23, θ33, θ43) have similar values. This means that the job satisfaction J = 1 (very dis-
satisfied) and J = 4 (very satisfied) have no relation with the levels of the income variable. However,
the job satisfaction J = 2 (little dissatisfied) and J = 3 (moderately satisfied) have relations with all
levels of the income variable. Hence, when the job satisfaction is either very dissatisfied or very satis-
fied, the income levels do not have relations with the job satisfaction. However, those with middle job
satisfaction levels (little dissatisfied and moderately satisfied) have relations with all levels of the job
satisfaction variable. Therefore, we can conclude that the job satisfaction variable has a linear rela-
tion with the income variable, which exhibits a similar analysis result of the linear-by-linear uniform
association model.

There exists the correspondence analysis method that represents a contingency table data. This
explores not only the relationship between the row and column variables with an emphasis on corre-
spondence but also the relationship between each variable’s categories. The CC plot is proposed to
be an alternative method that can also describe a contingency table data graphically, and this plot can
explain the relationship between each variable’s categories. Moreover, the correspondence analysis
is based on chi-squared distance with an emphasis on correspondence, whereas the CC plot is based
on the correlation coefficients between row and column variable’s category levels. And the CC plot
represents the correlation coefficients as the angles between two vectors in a unit circle geometrically,
whereas the correspondence analysis method is shown in a rectangle.

5. Correlation plot for high-dimensional contingency tables

We consider a three-dimensional I × J × K contingency table. For a given kth category of the third
layer variable (K = k), the correlation coefficient for the two selected rows and columns are denoted
as ρk

i ji′ j′
. Then, the K correlation coefficient matrices, (P1, . . . , PK), where Pk = (ρk

i ji′ j′
), k = 1, . . . ,K

can be obtained. For each kth correlation coefficient matrix, the I×J vector-matrix, θk = (θk
i j), are

calculated. With each vector-matrix, the CC plot can be represented. Hence, we could discuss K CC
plots for a three-dimensional contingency table and derive some relationships from the CC plots.

For an example of a 2 × 2 × 2 contingency table in Table 3, two correlation coefficients, P1 =

(ρ1
1122 = −0.1746) and P2 = (ρ2

1122 = −0.1590), and two vector matrices, θ1 = (θ1
i j = 0◦, 40◦,−40◦, 100◦)
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(a) (b)

Figure 4: The CC plots for the 2 × 2 × 2 contingency table.

and θ2 = (θ2
i j = 0◦, 40◦,−40◦, 99◦), are calculated.

The two CC plots in Figure 4 have analog shapes since the correlation coefficient ρ1
1122 = −0.1746

is almost the same as ρ2
1122 = −0.1590. Also, these CC plots are similar to that in Figure 1(a) except

for the larger angles of vector θ22 in Figure 4(a) and (b) compared to those in Figure 1(a). This is
because these correlation coefficients in Figure 4 have signs that are opposite that of ρ1122 = 0.2588
in Figure 1(a) and the absolute values are not very different.

6. Conclusions

There are lots of graphical representation methods for the two-dimensional I × J contingency tables.
Most methods are based on the frequencies, probabilities, association measures, and goodness-of-
fit statistics. In this work, a graphical method is proposed using the correlation coefficient matrix,
P = (ρi ji′ j′ ), whose element is the correlation coefficient for the selected levels of the row and column
variables from the I × J contingency table such as the i and i

′th (i , i
′

) levels of the row and the j and
j
′th ( j , j

′

) levels of the column.
Each value in the I × J vector-matrix, θ = (θi j), is represented as the angle corresponding to each

(i, j) cell. Therefore, the θi j vectors could be represented as a unit circle with angles. This plot is
named as the CC plot, which is a correlation plot for the contingency table.

Some 2× 2 and 3× 3 contingency tables are implemented as the CC plots. From the CC plots, the
relationships among the cells in a contingency table could be explained. It is found that the resulting
relations are almost the same as those of the log-linear model analysis with an illustrated example.

The CC plot can also be extended to more than the two-dimensional contingency tables. The CC
plots are explained for a three-dimensional contingency table and explored for a contingency 2×2×2
table.

There exists the correspondence analysis method which represents a contingency table data. This
method explore not only the relationship between the row and column variables with an emphasis on
correspondence but also the relationship between each variable’s categories on a rectangle. The CC
plot is proposed to be an alternative graphical method for a contingency table. Moreover, the corre-
spondence analysis is based on chi-squared distance with an emphasis on correspondence, whereas
the CC plot is based on the correlation coefficients between row and column variable’s category lev-
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els. And the CC plot represents the correlation coefficients as the angles between two vectors in a unit
circle geometrically, whereas the correspondence analysis method is shown in a rectangle.

Since the CC plot has some advantages that it is easy to use the algorithm for obtaining the angles
between two vectors, and simple to interpret the CC plot represented in a unit circle, the CC plot could
be used with other graphical methods as an alternative method for a contingency table. Therefore, the
CC plot proposed in this work can be a good and worthwhile graphical representation method for
categorical data.
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