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Abstract
Lung cancer is one of the leading causes of cancer deaths in the world. Investigation of mortality rates is

pivotal to adequately understand the determinants causing this disease, allocate public health resources, and apply
different control measures. Our study aims to analyze and forecast age-specific US lung cancer mortality trends.
We report functions of mortality rates for different age groups by incorporating functional principal component
analysis to understand the underlying mortality trend with respect to time. The mortality rates of lung cancer have
been higher in men than in women. These rates have been decreasing for all age groups since 1990 in men. The
same pattern is observed for women since 2000 except for the age group 85 and above. No significant changes
in mortality rates in lower age groups have been reported for both gender. Lung cancer mortality rates for males
are relatively higher than females. Ten-year predictions of mortality rates depict a continuous decline for both
gender with no apparent change for lower age groups (below 40).

Keywords: functional data analysis, lung cancer, mortality rate, principal component analysis,
basis function, time series

1. Introduction

Lung cancer is the most common cancer in males and the third most common in females mortality
rates in the world (Ferlay et al., 2019). In the United States, lung cancer is the cause of death for 24%
of all cancer deaths, and 13% of all new cancer diagnoses (Thun, 2008; Howlader et al., 2019). It is
the leading cause of US cancer deaths, regardless of gender and ethnicity (Thun, 2008; Howlader et
al., 2019; Siegel et al., 2019). Almost as many Americans die of lung cancer every year than that of
the prostate, breast, and colon cancer combined. The 5-year survival rate in the United States for lung
cancer is 15.5%. Despite the advancements in medical treatment during the last decades, advances in
lung cancer survival are yet to be achieved compared to other malignant cancers. Developing countries
get around 50% of the Global cases, whereas, in 1980, 69% of the cases were in developed countries.
In 1964, the US public health service published a seminal report causally relating smoking to lung
cancer. World Health Organization (WHO) predicts there will be around 1.9 billion smokers by 2025
with a sufficient increase in tobacco consumption, especially in Asia (Dela et al., 2011).

1 Corresponding author: Department of Mathematics, Spelman College, 350 Spelman Lane, SW, Science Center, 330 -
Box: 953, Atlanta, GA 30314, USA. E-mail: btharu@spelman.edu

Published 31 March 2021 / journal homepage: http://csam.or.kr
© 2021 The Korean Statistical Society, and Korean International Statistical Society. All rights reserved.



120 Bhikhari Tharu, Keshav Pokhrel, Gokarna Aryal, Ram C. Kafle, Netra Khanal

It is believed that the first comprehensive study of lung cancer was carried out by Adler in 1912.
Many studies show that smoking is the major cause of lung cancer. At the beginning of 1900, the
average smoker used to smoke less than 100 cigarettes per year, whereas in 1960, it increased to 3600
cigarettes per year. Multiple case-control studies have been carried out relating different kinds of
smoking and lung cancer (Boffetta et al., 1999). In this report, however, we focus on studying mor-
tality rates and their prediction. The accurate estimation and projection of mortality rates is essential
for planning and managing the public health policies of an identified population to allocate resources.
There are significant differences in time trends of mortality rates of males and females, as well as
age-specific trends that may be distinctive to separate countries and their populations. Establishing
parameters of the geographic population by country and further narrowing the predictions by gender
of each population is essential to better understand the disease dynamics. This study is restricted to
addressing the geographic population of the US and further distinguishing males from females within
that population.

Numerous studies have been conducted to analyze US lung cancer mortality. It has been widely
analyzed by using an age-period, age-cohort, age-period-cohort model, including frequentist and the
Bayesian setting (Takahashi et al., 2001; Rosenberg and Anderson, 2011; Tharu et al., 2015; Smith
and Wakefield, 2016). The time trends of lung cancer mortality rates have been projected using dif-
ferent approaches such as the generalized additive model, differential equation model, the age-period
model, and the joinpoint regression method (Negri et al., 1990; Clements et al., 2005; McCarthy et
al., 2012; Kafle et al., 2014; John and Hanke, 2016). However, the past attempts to model and fore-
cast the difference between males and females lung cancer mortality rates have not been sufficiently
addressed. These attempts have only considered the most recent information to forecast the mortality
rates and hence may not be able to capture the long term trends of the data. A different approach to
modeling such data with minimal assumptions and forecasting is therefore required, one that forecasts
by incorporating a large scale time series data.

In this article, we have implemented a functional time series model where the functional principal
component (Ramsay, 2005) decomposes the smooth curves to the basis functions. The method is
used to model and forecast the lung cancer mortality trends for different age-groups and gender. This
method differs from previous methods in the following ways. (i) It does not assume that the data
follows a particular distribution but assumes it is from an underlying smooth function. (ii) It uses the
entire age mortality curves to forecast and does not rely solely on recent observations. Forecasting
performance suggests that the functional data analysis approach increases the accuracy of predictions
(Booth et al., 2006). The main focuses of this article are to - study the time trend of age-specific
mortality rates for US males and females. - predict age-specific lung cancer mortality rates for US
males and females. - compare the time trend of age-specific lung cancer mortality rates within the
group.

2. Material and method

2.1. Material

Annual age-specific mortality rates of lung cancer data for US males and females from 1969 to 2017
are obtained from the National Cancer Institute (NCI) (SEER, 2019). The data is extracted from the
NCI database using SEER*Stat software. The NCI provides mortality rates for 5-year age groups,
but some age groups have an insufficient number of cases. We have regrouped the available data into
10-year intervals: 20–30, 30–40, 40–50, 50–60, 60–70, 70–80, and above 80 years. These age groups
are represented by 25, 35, 45, 55, 65, 75, 85 respectively thereafter. The age group 20–30 for females
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is not included in the study because of a large number of missing values. The annual mortality rates
are reported using the census population of the first day of July as a proxy for person-years at risk for
each calendar year.

2.2. Methodology

Annual lung cancer mortality of males and females are considered as a function of ages. The mortality
rate is defined as the number of deaths per 100,000 in a year. Recognizing that there is not a universal
transformation technique that can be applied for all types of data to reduce out of sample variance and
forecast error (Hyndman and Booth, 2008), this study took the log transformation of the data. The
analysis is performed to the transformed data (yt(x)). The functional time series model assumes the
underlying smooth function of the data with some observed error. We have implemented a nonpara-
metric smoothing technique (Ferraty and Vieu, 2006) to the transformed data yt(x) = log(y∗t (x)) to
prepare a smooth curve (st(x)) as functional data object. This study adapts the penalized regression
splines smoothing (Wood, 1994) method. Since the choice of a smoothing parameter is crucial, the
generalized cross-validation (GCV) criteria has been adapted to find the optimal tuning parameter λ
(Craven and Wahba, 1979).

GCV is defined as:

GCV(λ) =

(
n

n − df(λ)

) (
SSE

n − df(λ)

)
,

where SSE represents the sum of squares due to error. The right factor of GCV is the unbiased
estimate of error variance σ2 similar to regression analysis, and thus represents some discounting by
df(λ) from n, df(·) represents the degrees of freedom. The left factor further discounts this estimate by
multiplying by (n/(n − df(λ))) (Ramsay and Silverman, 2005). In some practical cases GCV depicts a
tendency of under smoothing the data. Therefore, Gu and Kim (2008) suggest to multiply it by factors
such as 1.2 or 1.4 and ensure that the additional discounting does not seriously increase the odds of
over-smoothing the data. We now have the functional time series of (xi, yt(xi)), t = 1, 2, 3, . . . , n,
i = 1, 2, 3, . . . ,m and

yt(xi) = st(xi) + σt(xi)εt,i, (2.1)

where yt(xi) is the lung cancer mortality rate for age group xi in year t, εt,i is an independent and
identically distributed standard normal variates with the amount of error σt(xi) that varies on age
and time. We obtained “m” smooth functional curves as functional data objects (Erbas et al., 2007;
Hyndman and Ullah, 2007) for the analysis by:

st(x) = µ(x) +

K∑
k=1

βt,kφk(x) + et(x), (2.2)

where et(x) is the uncorrelated error of the model, µ(x) is the mean curve of st(x) across years, {φk(x)}
is a set of orthonormal basis functions estimated using principal component decomposition method
(Ramsay and Dalzell, 1991), and K represents the optimal number of principal components in the
model.

Functional principal component (FPC) is applied to the smooth curves {st(xi)} which provides
the minimum number of basis functions, enables informative interpretation, and gives coefficients
βt,k which are uncorrelated with each other (Erbas et al., 2007). The coefficients βt,k are obtained
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by using a univariate time series model, autoregressive integrated moving average (ARIMA). Four
basis functions have provided a reasonable fit using a functional regression model where the first two
basis functions explain most of the variability in the data. This method’s efficacy is that it identifies
the small number of basis functions and therefore simplifies interpretations and creates uncorrelated
coefficients. The basis function (φk(x)) is modeled as a weight assigned to the variable which takes
the maximum and the minimum values at the highest and the lowest peak of the curve. A model is
chosen based on the minimum mean integrated squared error (MISE) for the basis function with a
given number of K. For a given K, and selected basis functions φk(x) the mean integrated squared
error (MISE) can be defined as:

MISE =
1
n

n∑
t=1

∫
e2

t (x)dx.

We used robust method to obtain µ(x) proposed by Hyndman and Ullah, 2007. The data in our
study do not contain any visible outliers or any other unusual behaviour, so we estimate µ(x) using the
mean of st(x) over t, and apply functional principal component decomposition. The FPCs are com-
puted by first constructing the q×n matrix G with ( j, t)th element st(x∗)− µ̂(x∗j) where {x∗1, x

∗
2, . . . , x

∗
q} is

fine grid of equally spaced values that span the interval [x1, xq]. In addition, the singular value decom-
position of G gives G = ΦΛV, where φ̂k(x∗j) is the ( j, k)th element of Φ and β̂t,k is the (t, k)th element of
G′Ψ. Please refer to (Hyndman and Ullah, 2007) for further details about the estimation procedures.

2.3. Forecast the mortality rates

The univariate time series model are fitted to each coefficients βt,k, t = 1, . . . , n and these estimates
are used to find the coefficients βt,k, t = n + 1, . . . , n + h and k = 1, . . . ,K. The basis functions φk are
obtained by using functional principal component method and the coefficients are obtained by using
univariate time series method. The coefficients βt,k and βt,l are assumed to be uncorrelated for k , l.
Therefore, univariate method will be an adequate method to forecast each time series β̂t,k. We use
forecast coefficients with Equation (2.2) to obtain st(x), t = T + 1, . . . ,T + h. From Equation (2.2),
forecast of st(x) are also the forecasts of yt(x) (Hyndman and Ullah, 2007).

Combining Equations (2.1) and (2.2), we can write

yt(xi) = µ(xi) +

K∑
k=1

βt,kφk(x) + et(x) + σt(xi)εt,i. (2.3)

This implies

ηT,h = Var
[
yT+h|yt(xi)

]
≈ σ̂2

µ(x) +

K∑
k=1

Var
(
βT+h|β1,k, . . . , βT,k

)
φ̂2

k(x) + var(et(x)) + σ2
T+h(x).

In addition, the variance of
(
βT+h|β1,k, . . . , βT,h

)
can be obtained from the time series model, the

variance of smooth estimate µ̂(x) can be obtained from the smoothing method, observational error
variance is obtained by assuming binomial distribution of mortality rates, and the model error variance
is obtained by averaging êt

2(x) for each x.Assuming the errors are normally distributed, a 100(1−α)%
prediction interval is constructed as ŷT,h(x) ± zα/2

√
ηT,h.

The exponential smoothing state-space model (Hyndman et al., 2008) is then used to forecast log-
transferred mortality rates and prediction intervals (Erbas et al., 2007). The mean integrated squared
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Figure 1: Lung cancer mortality rates per 100,000 for US males (top) and females (bottom) from 1969–2017.

forecasting error is then used to evaluate the accuracy of the estimated predictions for the estimates.
We estimated a 10-year prediction (2018–2027) of the lung cancer mortality for males and females
for each age group. Part of the results obtained for this paper has been facilitated by the statistical
package “ftsa” (Hyndman, 2019). Sample Rcodes are available in an Appendix A1.

3. Results and discussion

Figure 1 displays the observed lung cancer mortality rates within the US for both males (top chart)
and females (bottom chart) from 1969 to 2017. The mortality rates of all the male age groups have
continued to decline since 1990 (Siegel et al., 2019), and the same trend has been observed for the
females below age 70. But the decline in mortality for older females has been more pronounced and
began somewhat later: after 2000 for age group 75, and after 2010 for the age group 85. The male
lung cancer mortality rates are higher than that of females in all age groups. Higher mortality rates for
males indicate that they are more at risk of lung cancer than females (Patel et al., 2004; Tabatabai et
al., 2016). The mortality rates for males and females below the age of 40 remained at essentially the
same level. This may raise questions about new treatment procedures developed during the last few
decades. Rates for males and females above the age of 70 declined at a higher rate since 2010 (John
and Hanke, 2016; DeSantis et al., 2019). Although the global trend shows that the number of cancer
deaths is increasing, individual death rates for the US are falling (Roser and Ritchie, 2020).

In Figure 2, the top panel represents the observed and the smooth log-mortality rates per 100,000
males while the bottom panel represents the females. We have incorporated the penalized regression
splines (Wood, 1994) for smoothing the log mortality rates of the observed data. The colors in the
figures represent a chronicle order of the rainbow starting at the oldest 1969 as red, and the most recent
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Figure 2: The left panel represents observed log-mortality rates for males and females while the smooth log-
mortality rates are in the right panel from 1969–2017. Rainbow color code: red to purple from 1969–2017.

2017 as purple. These figures depict that female mortality rates have higher variability than males;
however, the mortality rates are higher in males than females. The mortality rates for both gender are
decreasing in recent years.

Figure 3 shows the first two functional principal components and their associated scores (in black
color) with 80% prediction intervals (in yellow color) using an exponential smoothing state-space
model for the US male population. From left to right, the first graph represents the estimated mean
curve, the second and third graphs represent basis functions, the fourth and fifth represent coefficient
corresponding to Basis function 1 and Basis function 2 respectively. In the bottom panel, the black
curves represent estimated coefficients by the functional principal component method and the blue
curves are estimated through the ARIMA model. The first two basis functions explain 82.52% and
13.95% variability of the data. The Basis function 1, φ1(x) models males at ages around 45, and the
Basis function 2, φ2(x) models males at ages around 35. The decrease in βt,1(x) and βt,2(x) accelerates
during the last 20 years.

Figure 4 is for female population. For females, βt,1(x) models at age around 70 and βt,2(x) models
between 60 to 70. The coefficients βt,1(x) and βt,2(x) show a decreasing trend in the past 20 years,
however βt,2 has different trend during 1980–1995. Two basis functions for females explain 78.08%
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Figure 3: The first two principal components and associated scores of lung cancer mortality rates for the males.

and 14.97% variability of the data. Since forecast accuracy is significantly affected by outliers, bivari-
ate and functional highest density region (HDR) boxplot are used to identify the outliers (Hyndman
and Shang, 2010). We did not notice potential outliers in the data.

We selected optimal number of principal components K = 2 because (i) the first two principal
components explain sufficiently large variation (more than 90%) of the subject response variable,
(ii) adding an extra principal component merely adds 0.5% of the variability of the data, (iii) the
interpretation of the third and the fourth principal components is unclear other than referring it to
unexplained variations of the first two principal components.

The rainbow plot in Figure 5 (top) displays the forecast of male lung cancer mortality rate for
2018–2027 using the exponential smoothing state-space model (Hyndman et al., 2008) whereas the
bottom panel displays for the females; the gray color represents the data used for estimation. This
rainbow plot contains curves that are ordered chronologically within the rainbow – the year (2018) is
red and the year (2027) is purple. In order to enhance the forecast accuracy of the model, sufficiently
large number of principal components K = 4 has been chosen in the study (Hyndman and Booth,
2008). However, two principal components provide every indication of adequacy for the analysis.
Mortality rates increase with increasing age; nonetheless the mortality rates are greater during recent
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Figure 4: The first two principal components and associated scores of lung cancer mortality rates for the females.

years than what was seen in the past for the older age groups (above 70, in particular for females).
Cancer patients of ages above 80 have the highest mortality rates accompanied by a lower survival rate.
This group is likely to have cancer at higher stages, less likely to have complex surgery, functional
declines, and undertreatment (DeSantis et al., 2019). The predicted mortality rates appear to decrease
for all age groups regardless of gender; however, the rate is slightly higher in females between ages
60 to 70. Our results are consistent with the results found by a number of studies such as Alberg et
al. (2013), Siegel et al. (2020), Kazerouni et al. (2004), and Tabatabai et al. (2016). This decrease
could be due to tobacco control efforts implemented since the 1960s, the advances in detection and
diagnosis, and improvements in the treatments (Kazerouni et al., 2004; Jeon et al., 2018; Rapp et
al., 1988; Corrales, 2018). In addition, immunotherapy and chemotherapy play a significant role in
reducing lung cancer mortality in the USA and the world.

Table 1 presents the forecast of expected mortality rates per 100,000 and 80% prediction interval
by gender and age groups: 20–30, 30–40, 40–50, 50–60, 70–80, and above 80 for the year 2018,
2022, and 2027. The mortality rates are expected to decrease across the age groups by an average of
34% for males and 38% for females between 2018 and 2027. However, the differences in predicted
mortality rates for specific age groups are more pronounced. In particular, the decrease in mortality
rates of young adults (below 45) females is at least 10% higher than that of males.
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Figure 5: Age-specific lung cancer mortality rates for males (top) and females (bottom) as functional time series
for all age groups from 1969 to 2017 (gray color). The predicted mortality rates from 2018 to 2027 are presented

using red to purple color in the order of the rainbow.

Table 1: Predicted lung cancer mortality rates per 100,000 of US males and females of each age-specific group
for the years 2018, 2022, and 2027 with 80% prediction interval

2018 2022 2027Age Lower Mean Upper Lower Mean Upper Lower Mean Upper

Male

20–30 0.115 0.159 0.218 0.100 0.150 0.224 0.086 0.140 0.229
30–40 0.724 0.791 0.864 0.580 0.648 0.724 0.423 0.505 0.602
40–50 6.100 6.636 7.218 4.654 5.146 5.689 3.235 3.744 4.333
50–60 37.020 39.132 41.364 28.872 30.834 32.929 20.793 22.891 25.199
60–70 119.662 123.169 126.777 93.514 97.259 101.152 67.492 72.395 77.652
70–80 269.303 278.843 288.723 220.068 232.129 244.851 166.200 184.583 204.999

above 80 383.785 399.503 415.864 323.097 344.010 366.275 252.099 285.354 322.995

Female

30–40 0.541 0.606 0.678 0.368 0.443 0.533 0.202 0.288 0.413
40–50 5.443 5.723 9.016 3.788 4.120 4.481 2.320 2.775 3.306
50–60 35.126 36.274 37.460 29.540 31.509 33.610 22.725 26.393 30.654
60–70 76.726 80.168 83.764 57.673 61.205 64.952 38.889 43.527 48.718
70–80 172.226 181.418 191.100 142.224 151.422 161.216 108.612 120.850 134.470

above 80 226.089 239.158 252.982 210.878 226.735 243.785 186.164 212.734 243.095
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Figure 6 presents predictions of mortality rates for males and females for three different years
(black-2018, red-2022, and blue-2027) along with 80% prediction intervals. A continuous decline in
mortality rates for both gender is apparent. Furthermore, we expect fewer female fatalities than males
in the future (Table 1). Since 80% prediction intervals for males and females are narrower (within a
margin of error of 30 to 50 counts per 100,000), the model appears to capture expected mortality rates
and predicts the data well. The elderly population (more than 60 years) show the consistently higher
prediction of mortality rates for males compared to females (Table 1 and Figure 6).

Figure 7 depicts age-specific mortality rates per 100,000, a ten-year prediction, and 80% predic-
tion intervals of the estimates for males and females. The forecast shows that lung cancer mortality
rates are expected to decrease across all the age groups with no visible difference in trends.

We observed higher declining mortality rates for ages 60 to 80 years, which suggests a possible
influence of recent increases in health awareness (Siegel, 2020; DeSantis et al., 2019). The mortality
rates for the age group below 30 for males and females are likely to be stable (John and Hanke, 2016)
in the future because of advanced treatments and early detection (Devesa et al., 1989; Rapp et al.,
1988; Corrales et al., 2018; Antonia et al., 2014) as well as strong body functionality. The forecast
suggests that mortality is higher in males than in females in each age group. Some of the major reasons
for the higher mortality rates for males are likely to be due to weaker responses to the treatments,
lower likelihood to survive at different stages of lung cancer, lower immune power against the effects
of smoking, environmental adaptability, and the difference in lifestyles (Pauk et al., 2005). It is also
observed that women respond to some of the chemotherapy treatments better than men. Similarly, the
surgical treatments of lung cancer benefit women more than men at all stages of the disease (Tabatabai
et al., 2016). In addition, females are more susceptible than males to carcinogenic substances (Patel
et al., 2004). The wider prediction intervals exhibited at the end of each age-specific groups in the
ten-year forecast are indicators of greater uncertainty for the long term prediction (Figures 7). The
model does come with some limitations that include: (i) the effect of the birth cohort, which has not
been included in the study, despite being a significant factor that impacts mortality trends, (ii) the
smoothing method adapted in this report may reduce the natural variability present in the data.
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Figure 7: Observed data (1969-2017) with an estimated ten-year prediction (2018-2027) and 80% prediction
intervals of age-specific mortality rates of males (top) and females (bottom).

The inconsistency in predicted mean lines with the observed data in the oldest age groups: 70-
80, and 80+ is noticeable. In the oldest age group women outnumber men because of their longer
life expectancy; in 2016, there were 4.2 million women aged 85 years and older compared with 2.2
million men, or 186 women for every 100 men. The number of male patients in these age groups
is reasonably less than that of women. This also creates higher variability in mortality rates and
results with wider prediction intervals of mortality rates. The lifetime carcinogenic exposures, somatic
mutations, and age-related changes in immune system also adds up to mortality rates (DeSantis et al.,
2019). Most importantly, reasons for subsequent decline in risk with higher variability in mortality
rates and inconsistencies in predicted mean lines in those age groups are unclear.

Cancer in 80+ age group appears in more advanced stages. The patients with cancer in this age
group have the lowest relative survival of any age group and largest disparities noted when cancer is
diagnosed at advanced stages. In addition, these patients are less likely to receive surgical treatment.
Treating patients aged 85 years and older who have cancer is complex because of the higher likelihood
of comorbid conditions, declines in health status associated with aging, and dearth of data regarding
treatment procedure in this age group. The census bureau reported that the United States population
has continued gray (DeSantis et al., 2019). Elderly population is one of the fastest growing age group
in the United states. There is an increasing need of a comprehensive study of evidence-based treatment
procedure to develop treatment guide for these age groups.

The proposed model is under the functional paradigm, direct comparisons with non-functional
models are not appropriate. To compare the functional and non-functional models, the last five years
of data (2013–2017) are used for validation. We have fitted the models using mortality rates from
1969 to 2012 and predicted for the last five years. The different models are compared using the sum of
squares due to errors (SSE). The lower the sum of the square due to error, the better the prediction. The
proposed model outperforms the generalized Poisson regression and the generalized additive models
with various spline procedures. The sum of squares due to errors in Poisson regression for males
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is 43117.1 and for females 35955. However, the generalized additive model with cubic regression
splines is competitive with the proposed model. The SSE using proposed models for males and
females are 10093.5 and 1737.7 whereas the generalized additive model with cubic spline produced
SSE of 10908.28 and 1203.22 for males and females respectively. The mean integrated sum of squares
due to errors for the males are 0.02713 and 0.6757 for the females.

4. Conclusion

Understanding the trend of mortality rates with accurate prediction is imperative for disease prevention
and public health planning. In addition, the effects of demographic and spatial attributable variables
will create much-needed attention for the prevention and control of the disease to the particular clus-
ters of the population. We applied a novel method, the functional time series analysis, in order to
model US lung cancer mortality rates of males and females. Even though we observed a declining
trend in mortality, lung cancer (38.5) shows a stark difference in mortality rates (per 100,000) com-
pared to other highly vulnerable cancers such as prostate(19.0), colon and rectum (13.7), breast (11.1),
pancreatic(11.0) cancer (SEER, 2019). The developed model displays the strengths of good fit and
better prediction accuracy. We consistently observed lower prediction error by functional time series
model compared to other competitive statistical methods. In addition, the basis functions capture the
main features and trends by taking historical data into consideration. The penalized spline smooth-
ing method applied to the log-transformation of the observed lung cancer mortality rates is flexible
to model sudden change in trend, missing data, and long term prediction. The proposed modeling
procedure can be adapted to model and predict public health, environmental, and financial indices to
name a few. Accurate prediction of mortality trends is fundamental to create awareness, design public
health policies, develop proper etiological epidemiology, and diagnosis procedures. The following are
the highlights of some of the notable features of this study:

• The trends of lung cancer mortality rates of the US males and females are different. Mortality rates
are higher for males than in females in every age group.

• Ten-year prediction for the US lung cancer mortality rates suggests a continuing decline for both
males and females. However, the mortality rates for young adults (below 40) are stable during the
period of study.

• The combination of functional time series and the decomposition of the principal component anal-
ysis method is better than existing competitive methodologies to model and forecast the mortality
rates.

The current study has not incorporated the effects of smoking, birth cohort, and seasonal impacts.
By incorporating these variables could lead to an interesting advancement of the current study.
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Appendix:

Sample codes

# library(ftsa)

Nonparametric smoothing to prepare functional data

# sm_maledata<-as.list(rep(NA,7))
# id<-seq(25,85,10)
# for(i in 1:length(id)){
# sm_male<-male[male[,1]==id[i],]
# sm_out_male<-min.np(sm_male$trate1,
# type.S =S.KNN,
# par.CV = list(criteria="GCV"))
# sm_out1_male<-sm_out_male$fdata.est
# sm_maledata[[i]][1:49]<-sm_out1_male$data
# }

Basis functions

# M.set<-c(4,5,6)
# r.set<-c(2,3,4)
# ini.method="EM"
# basis.method="bs"
# sl.v=rep(0.5,10)
# max.step=50
# grid.l=seq(0,1,0.01)
# grids=seq(0,1,0.002)
# result<-fpca.mle(sm_malematrix, M.set,r.set,ini.method,
# basis.method,sl.v,max.step,grid.l,grids)
# summary(result)
# M<-result$selected_model[1]
# r<-result$selected_model[2]

Forecasting smoothed data

# male<-as.data.frame(sm_matrix)
# spread_data<-spread(male,time,value)
# spread_data<-as.matrix(spread_data)
# age<-unique(male[,1])
# fds_data<-spread_data[,-1]
# ages<-c("6","7","8","9","10","11","12",
# "13","14","15","16","17","18")
# rownames(fds_data)<-ages
#

1
# time<-unique(male[,3])
# time<-as.ts(time)
# x<-age
# y<-fds_data
# new_sm<-list(x=x,y=y,time=time)
# plot(forecast(ftsm(new_sm,order=2),h=10),"components")

Checking the ourtliers in the data

# functional bag plot for outliers #
# outl_male<-sfts(ts(as.numeric(smooth_male1$y),frequency = 7))
# fboxplot(data = outl_male, plot.type = "functional",
# type = "bag", projmethod="PCAproj")
# fboxplot(data = outl_male, plot.type = "bivariate",
# type = "bag", projmethod="PCAproj")

2
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