References
- Addou, F.Y., Meradjah, M., Bousahla, A.A., Benachour, A., Bourada, F., Tounsi, A. and Mahmoud, S. (2019), "Influences of porosity on dynamic response of FG plates resting on Winkler/Pasternak/Kerr foundation using quasi 3D HSDT", Comput. Concrete, 24(4), 347-367. https://doi.org/10.12989/cac.2019.24.4.347.
- Adhikari, B., Dash, P. and Singh, B.N. (2020), "Buckling analysis of porous FGM sandwich plates under various types nonuniform edge compression based on higher order shear deformation theory", Compos. Struct., 251, 112597. https://doi.org/10.1016/j.compstruct.2020.112597.
- Aggarwal, C.C. (2018), Neural networks and deep learning, Springer
- Akbas, S.D. (2017), "Vibration and static analysis of functionally graded porous plates", Journal of Applied and Computational Mechanics. 3(3), 199-207. https://doi.org/10.22055/JACM.2017.21540.1107
- Al-Furjan, M., Habibi, M., Shan, L. and Tounsi, A. (2021), "On the vibrations of the imperfect sandwich higher-order disk with a lactic core using generalize differential quadrature method", Compos. Struct., 257, 113150. https://doi.org/10.1016/j.compstruct.2020.113150.
- Al Rjoub, Y.S. and Alshatnawi, J.A. (2020), "Free vibration of functionally-graded porous cracked plates", Structures, 28, 2392-2403. https://doi.org/10.1016/j.istruc.2020.10.059.
- Alimirzaei, S., Mohammadimehr, M. and Tounsi, A. (2019), "Nonlinear analysis of viscoelastic micro-composite beam with geometrical imperfection using FEM: MSGT electro-magnetoelastic bending, buckling and vibration solutions", Struct. Eng. Mech., 71(5), 485-502. https://doi.org/10.12989/sem.2019.71.5.485.
- Allahkarami, F., Tohidi, H., Dimitri, R. and Tornabene, F. (2020), "Dynamic stability of bi-directional functionally graded porous cylindrical shells embedded in an elastic foundation", Appl. Sci., 10(4), 1345. https://doi.org/10.3390/app10041345.
- Anitescu, C., Atroshchenko, E., Alajlan, N. and Rabczuk, T. (2019), "Artificial neural network methods for the solution of second order boundary value problems", Comput. Mater. Continua, 59(1), 345-359. https://doi.org/10.32604/cmc.2019.06641.
- Ansari, R., Faraji Oskouie, M., Gholami, R. and Sadeghi, F. (2016), "Thermo-electro-mechanical vibration of postbuckled piezoelectric Timoshenko nanobeams based on the nonlocal elasticity theory", Compos. Part B: Eng., 89, 316-327. https://doi.org/10.1016/j.compositesb.2015.12.029.
- Aria, A.I. and Friswell, M.I. (2019), "A nonlocal finite element model for buckling and vibration of functionally graded nanobeams", Compos. Part B: Eng., 166, 233-246. https://doi.org/10.1016/j.compositesb.2018.11.071.
- Aria, A.I., Rabczuk, T. and Friswell, M.I. (2019), "A finite element model for the thermo-elastic analysis of functionally graded porous nanobeams", Eur. J. Mech. - A/Solids, 77, 103767. https://doi.org/10.1016/j.euromechsol.2019.04.002.
- Bahadir, F. and Balik, F.S. (2017), "Predicting Displacement Data of Three-Dimensional Reinforced Concrete Frames with Different Strengthening Applications Using ANN", Periodica Polytechnica Civil Eng., 61(4), 843-856. https://doi.org/10.3311/PPci.9652.
- Bekkaye, T.H.L., Fahsi, B., Bousahla, A.A., Bourada, F., Tounsi, A., Benrahou, K.H., Tounsi, A. and Al-Zahrani, M.M. (2020), "Porosity-dependent mechanical behaviors of FG plate using refined trigonometric shear deformation theory", Comput. Concrete, 26(5), 439-450. http://dx.doi.org/10.12989/cac.2020.26.5.439.
- Berghouti, H., Adda Bedia, E., Benkhedda, A. and Tounsi, A. (2019), "Vibration analysis of nonlocal porous nanobeams made of functionally graded material", Adv. Nano Res., 7(5), 351-364. https://doi.org/10.12989/anr.2019.7.5.351.
- Bouazza, M., Kenouza, Y., Benseddiq, N. and Zenkour, A.M. (2017), "A two-variable simplified nth-higher-order theory for free vibration behavior of laminated plates", Compos. Struct., 182, 533-541. https://doi.org/10.1016/j.compstruct.2017.09.041.
- Bouderba, B. and Berrabah, H.M. (2020), "Bending response of porous advanced composite plates under thermomechanical loads", Mech. Based Des. Struct. Mach., 1-21. https://doi.org/10.1080/15397734.2020.1801464.
- Bre, F., Gimenez, J.M. and Fachinotti, V.D. (2018), "Prediction of wind pressure coefficients on building surfaces using artificial neural networks", Energ. Build., 158, 1429-1441. https://doi.org/10.1016/j.enbuild.2017.11.045.
- Chaabane, L.A., Bourada, F., Sekkal, M., Zerouati, S., Zaoui, F.Z., Tounsi, A., Derras, A., Bousahla, A.A. and Tounsi, A. (2019), "Analytical study of bending and free vibration responses of functionally graded beams resting on elastic foundation", Struct. Eng. Mech., 71(2), 185-196. https://doi.org/10.12989/sem.2019.71.2.185.
- Chaht, F.L., Kaci, A., Houari, M.S.A., Tounsi, A., Beg, O.A. and Mahmoud, S. (2015), "Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect", Steel Compos. Struct., 18(2), 425-442. https://doi.org/10.12989/scs.2015.18.2.425.
- Chen, D., Kitipornchai, S. and Yang, J. (2016), "Nonlinear free vibration of shear deformable sandwich beam with a functionally graded porous core", Thin-Walled Structures. 107 39-48. https://doi.org/10.1016/j.tws.2016.05.025
- Chen, D., Kitipornchai, S. and Yang, J. (2018), "Dynamic response and energy absorption of functionally graded porous structures", Mater. Design, 140, 473-487. https://doi.org/10.1016/j.matdes.2017.12.019.
- Chen, D., Yang, J. and Kitipornchai, S. (2015), "Elastic buckling and static bending of shear deformable functionally graded porous beam", Compos. Struct., 133, 54-61. https://doi.org/10.1016/j.compstruct.2015.07.052.
- Chen, D., Yang, J. and Kitipornchai, S. (2016), "Free and forced vibrations of shear deformable functionally graded porous beams", Int. J. Mech. Sci., 108-109, 14-22. https://doi.org/10.1016/j.ijmecsci.2016.01.025.
- Cuong-Le, T., Nguyen, K.D., Nguyen-Trong, N., Khatir, S., Nguyen-Xuan, H. and Abdel-Wahab, M. (2021), "A threedimensional solution for free vibration and buckling of annular plate, conical, cylinder and cylindrical shell of FG porouscellular materials using IGA", Compos. Struct., 259, 113216. https://doi.org/10.1016/j.compstruct.2020.113216.
- Dastjerdi, S., Malikan, M., Dimitri, R. and Tornabene, F. (2021), "Nonlocal elasticity analysis of moderately thick porous functionally graded plates in a hygro-thermal environment", Compos. Struct., 255, 112925. https://doi.org/10.1016/j.compstruct.2020.112925.
- Dehshahri, K., Nejad, M.Z., Ziaee, S., Niknejad, A. and Hadi, A. (2020), "Free vibrations analysis of arbitrary threedimensionally FGM nanoplates", Adv. Nano Res., 8(2), 115-134. https://doi.org/10.12989/anr.2020.8.2.115.
- Dey, S., Mukhopadhyay, T., Spickenheuer, A., Gohs, U. and Adhikari, S. (2016), "Uncertainty quantification in natural frequency of composite plates-An Artificial neural network based approach", Adv. Compos. Lett., 25(2), 096369351602500203. https://doi.org/10.1177/096369351602500203.
- Ebrahimi, F. and Habibi, S. (2016), "Deflection and vibration analysis of higher-order shear deformable compositionally graded porous plate", Steel Compos. Struct., 20(1), 205-225. http://dx.doi.org/10.12989/scs.2016.20.1.205.
- Ebrahimi, F. and Jafari, A. (2018), "A four-variable refined sheardeformation beam theory for thermo-mechanical vibration analysis of temperature-dependent FGM beams with porosities", Mech. Adv. Mater. Struct., 25(3), 212-224. https://doi.org/10.1080/15376494.2016.1255820.
- Ebrahimi, F., Seyfi, A., Dabbagh, A. and Tornabene, F. (2019), "Wave dispersion characteristics of porous graphene plateletreinforced composite shells", Struct. Eng. Mech., 71(1), 99-107. https://doi.org/10.12989/sem.2019.71.1.099.
- Gao, Y., Xiao, W.S. and Zhu, H. (2019), "Nonlinear bending of functionally graded porous nanobeam subjected to multiple physical load based on nonlocal strain gradient theory", Steel Compos. Struct., 31(5), 469-488. https://doi.org/10.12989/scs.2019.31.5.469.
- Goswami, S., Anitescu, C., Chakraborty, S. and Rabczuk, T. (2020), "Transfer learning enhanced physics informed neural network for phase-field modeling of fracture", Theor. Appl. Fract. Mech., 106, 102447. https://doi.org/10.1016/j.tafmec.2019.102447.
- Guellil, M., Saidi, H., Bourada, F., Bousahla, A.A., Tounsi, A., Al-Zahrani, M.M., Hussain, M. and Mahmoud, S. (2021), "Influences of porosity distributions and boundary conditions on mechanical bending response of functionally graded plates resting on Pasternak foundation", Steel Compos. Struct., 38(1), 1-15. http://dx.doi.org/10.12989/scs.2021.38.1.001.
- Guessas, H., Zidour, M., Meradjah, M. and Tounsi, A. (2018), "The critical buckling load of reinforced nanocomposite porous plates", Struct. Eng. Mech., 67(2), 115-123. https://doi.org/10.12989/sem.2018.67.2.115.
- Guo, H., Zhuang, X. and Rabczuk, T. (2021), "A deep collocation method for the bending analysis of Kirchhoff plate", arXiv preprint arXiv:2102.02617. http://dx.doi.org/10.32604/cmc.2019.06660.
- Hamdia, K.M., Ghasemi, H., Bazi, Y., AlHichri, H., Alajlan, N. and Rabczuk, T. (2019), "A novel deep learning based method for the computational material design of flexoelectric nanostructures with topology optimization", Finite Elem. Anal. Des., 165, 21-30. https://doi.org/10.1016/j.finel.2019.07.001.
- Hamdia, K.M., Zhuang, X. and Rabczuk, T. (2021), "An efficient optimization approach for designing machine learning models based on genetic algorithm", Neural Comput. Appl., 33(6), 1923-1933. https://doi.org/10.1007/s00521-020-05035-x.
- Hirane, H., Belarbi, M.-O., Houari, M.S.A. and Tounsi, A. (2021), "On the layerwise finite element formulation for static and free vibration analysis of functionally graded sandwich plates", Eng. with Comput., 1-29. https://doi.org/10.1007/s00366-020-01250-1
- Jouneghani, F.Z., Dimitri, R. and Tornabene, F. (2018), "Structural response of porous FG nanobeams under hygrothermo-mechanical loadings", Compos. Part B: Eng., 152, 71-78. https://doi.org/10.1016/j.compositesb.2018.06.023.
- Khatir, S., Boutchicha, D., Le Thanh, C., Tran-Ngoc, H., Nguyen, T.N. and Abdel-Wahab, M. (2020), "Improved ANN technique combined with Jaya algorithm for crack identification in plates using XIGA and experimental analysis", Theor. Appl. Fract. Mech., 107, 102554. https://doi.org/10.1016/j.tafmec.2020.102554.
- Khatir, S., Tiachacht, S., Thanh, C.L., Bui, T.Q. and Abdel Wahab, M. (2019), "Damage assessment in composite laminates using ANN-PSO-IGA and Cornwell indicator", Compos. Struct., 230, 111509. https://doi.org/10.1016/j.compstruct.2019.111509.
- Khdeir, A.A. and Reddy, J. (1994), "Free vibration of cross-ply laminated beams with arbitrary boundary conditions", Int. J. Eng. Sci., 32(12), 1971-1980. https://doi.org/10.1016/0020-7225(94)90093-0.
- Kitipornchai, S., Chen, D. and Yang, J. (2017), "Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets", Mater. Design, 116, 656-665. https://doi.org/10.1016/j.matdes.2016.12.061.
- Kumar, V., Singh, S.J., Saran, V.H. and Harsha, S.P. (2021), "Vibration characteristics of porous FGM plate with variable thickness resting on Pasternak's foundation", Eur. J. Mech. - A/Solids. 85, 104124. https://doi.org/10.1016/j.euromechsol.2020.104124
- Le Thanh, C., Nguyen, T.N., Vu, T.H., Khatir, S. and Wahab, M.A. (2020), "A geometrically nonlinear size-dependent hypothesis for porous functionally graded micro-plate", Eng. with Comput., 1-12. https://doi.org/10.1007/s00366-020-01154-0.
- Madenci, E. (2019), "A refined functional and mixed formulation to static analyses of fgm beams", Struct. Eng. Mech., 69(4), 427-437. https://doi.org/10.12989/sem.2019.69.4.427.
- Madenci, E. and Gulcu, S. (2020), "Optimization of flexure stiffness of FGM beams via artificial neural networks by mixed FEM", Struct. Eng. Mech., 75(5), 633-642. https://doi.org/10.12989/sem.2020.75.5.633.
- Madenci, E., Onuralp Ozkilic, Y. and Gemi, L. (2020), "Buckling and free vibration analyses of pultruded GFRP laminated composites: Experimental, numerical and analytical investigations", Compos. Struct., 254, 112806. https://doi.org/10.1016/j.compstruct.2020.112806.
- Madenci, E., Ozkilic, Y.O. and Gemi, L. (2020), "Experimental and theoretical investigation on flexure performance of pultruded GFRP composite beams with damage analyses", Compos. Struct., 242, 112162. https://doi.org/10.1016/j.compstruct.2020.112162.
- Madenci, E., Ozkilic, Y.O. and Gemi, L. (2020), "Theoretical Investigation on Static Analysis of Pultruded GFRP Composite Beams", Akademik Platform Muhendislik ve Fen Bilimleri Dergisi, 8(3), 483-490. https://doi.org/10.21541/apjes.734770.
- Madenci, E. and Ozutok, A. (2020), "Variational approximate for high order bending analysis of laminated composite plates", Struct. Eng. Mech., 73(1), 97-108. https://doi.org/10.12989/sem.2020.73.1.097.
- Magnucka-Blandzi, E. (2008), "Axi-symmetrical deflection and buckling of circular porous-cellular plate", Thin-Wall. Struct., 46(3), 333-337. https://doi.org/10.1016/j.tws.2007.06.006.
- Magnucka-Blandzi, E. (2010), "Non-linear analysis of dynamic stability of metal foam circular plate", J. Theor. Appl. Mech., 48(1), 207-217.
- Magnucki, K., Malinowski, M. and Kasprzak, J. (2006), "Bending and buckling of a rectangular porous plate", Steel Compos. Struct., 6(4), 319-333. https://doi.org/10.12989/scs.2006.6.4.319.
- Magnucki, K. and Stasiewicz, P. (2004), "Elastic buckling of a porous beam", J. Theor. Appl. Mech., 42(4), 859-868.
- Magnucki, K., Witkowski, D. and Lewinski, J. (2020), "Bending and free vibrations of beams with symmetrically varying mechanical properties-Shear effect", Mech. Adv. Mater. Struct., 27(4), 325-332. https://doi.org/10.1080/15376494.2018.1472350.
- Malikan, M., Tornabene, F. and Dimitri, R. (2018), "Nonlocal three-dimensional theory of elasticity for buckling behavior of functionally graded porous nanoplates using volume integrals", Mater. Res. Express, 5(9), 095006. https://doi.org/10.1088/2053-1591/aad4c3
- Medani, M., Benahmed, A., Zidour, M., Heireche, H., Tounsi, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S. (2019), "Static and dynamic behavior of (FG-CNT) reinforced porous sandwich plate using energy principle", Steel Compos. Struct., 32(5), 595-610. https://doi.org/10.12989/scs.2019.32.5.595.
- Mekerbi, M., Benyoucef, S., Mahmoudi, A., Bourada, F. and Tounsi, A. (2019), "Investigation on thermal buckling of porous FG plate resting on elastic foundation via quasi 3D solution", Struct. Eng. Mech., 72(4), 513-524. https://doi.org/10.12989/sem.2019.72.4.513.
- Mirjavadi, S.S., Afshari, B.M., Shafiei, N., Hamouda, A. and Kazemi, M. (2017), "Thermal vibration of two-dimensional functionally graded (2D-FG) porous Timoshenko nanobeams", Steel Compos. Struct., 25(4), 415-426. https://doi.org/10.12989/scs.2017.25.4.415.
- Mojahedin, A., Jabbari, M., Khorshidvand, A. and Eslami, M. (2016), "Buckling analysis of functionally graded circular plates made of saturated porous materials based on higher order shear deformation theory", Thin-Wall. Struct., 99, 83-90. https://doi.org/10.1016/j.tws.2015.11.008.
- Mojahedin, A., Joubaneh, E.F. and Jabbari, M. (2014), "Thermal and mechanical stability of a circular porous plate with piezoelectric actuators", Acta Mechanica, 225(12), 3437-3452. https://doi.org/10.1007/s00707-014-1153-x.
- Ozkilic, Y.O., Aksoylu, C. and Arslan, M.H. (2021), "Experimental and numerical investigations of steel fiber reinforced concrete dapped-end purlins", J. Build. Eng., 36, 102119. https://doi.org/10.1016/j.jobe.2020.102119.
- Ozkilic, Y.O., Madenci, E. and Gemi, L. (2020), "Tensile and compressive behaviors of the pultruded GFRP lamina", Turkish J. Eng. (TUJE), 4(4), 169-175. https://doi.org/10.31127/tuje.631481.
- Ozkilic, Y.O., Yazman, S., Aksoylu, C., Arslan, M.H. and Gemi, L. (2021), "Numerical investigation of the parameters influencing the behavior of dapped end prefabricated concrete purlins with and without CFRP strengthening", Constr. Build. Mater., 275, 122173. https://doi.org/10.1016/j.conbuildmat.2020.122173.
- Ozutok, A. and Madenci, E. (2013), "Free vibration analysis of cross-ply laminated composite beams by mixed finite element formulation", Int. J. Struct. Stab. Dynam., 13(2), 1250056. https://doi.org/10.1142/S0219455412500563.
- O zutok, A. and Madenci, E. (2017), "Static analysis of laminated composite beams based on higher-order shear deformation theory by using mixed-type finite element method", Int. J. Mech. Sci., 130, 234-243. https://doi.org/10.1016/j.ijmecsci.2017.06.013.
- O zutok, A., Madenci, E. and Kadioglu, F. (2014), "Free vibration analysis of angle-ply laminate composite beams by mixed finite element formulation using the Gateaux differential", Sci. Eng. Compos. Mater., 21(2), 257-266. https://doi.org/10.1515/secm2013-0043
- Rastbood, A., Gholipour, Y. and Majdi, A. (2017), "Stress Analysis of Segmental Tunnel Lining Using Artificial Neural Network", Periodica Polytechnica Civil Eng., 61(4), 664-676. https://doi.org/10.3311/PPci.9700.
- Reddy, J.N. (1984), "A Simple Higher-Order Theory for Laminated Composite Plates", J. Appl. Mech., 51(4), 745-752. https://doi.org/10.1115/1.3167719.
- Reddy, J.N. (2004), Mechanics of laminated composite plates and shells: theory and analysis, CRC press
- Reddy, M.R.S., Reddy, B.S., Reddy, V.N. and Sreenivasulu, S. (2012), "Prediction of Natural Frequency of Laminated Composite Plates Using Artificial Neural Networks", Engineering, 4(6), 9. https://doi.org/10.4236/eng.2012.46043.
- Rezaei, A.S., Saidi, A.R., Abrishamdari, M. and Mohammadi, M.H.P. (2017), "Natural frequencies of functionally graded plates with porosities via a simple four variable plate theory: An analytical approach", Thin-Wall. Struct., 120, 366-377. https://doi.org/10.1016/j.tws.2017.08.003.
- Sadoughifar, A., Farhatnia, F., Izadinia, M. and Talaeitaba, S.B. (2019), "Nonlinear bending analysis of porous FG thick annular/circular nanoplate based on modified couple stress and two-variable shear deformation theory using GDQM", Steel Compos. Struct., 33(2), 307-318. https://doi.org/10.12989/scs.2019.33.2.307.
- Safaei, B. (2020), "The effect of embedding a porous core on the free vibration behavior of laminated composite plates", Steel Compos. Struct., 35(5), 659-670. https://doi.org/10.12989/scs.2020.35.5.659.
- Samaniego, E., Anitescu, C., Goswami, S., Nguyen-Thanh, V.M., Guo, H., Hamdia, K., Zhuang, X. and Rabczuk, T. (2020), "An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications", Comput. Method. Appl. Mech. Eng., 362, 112790. https://doi.org/10.1016/j.cma.2019.112790.
- Shafiei, N., Mousavi, A. and Ghadiri, M. (2016), "On sizedependent nonlinear vibration of porous and imperfect functionally graded tapered microbeams", Int. J. Eng. Sci., 106, 42-56. https://doi.org/10.1016/j.ijengsci.2016.05.007.
- Shahsavari, D., Karami, B. and Li, L. (2018), "A high-order gradient model for wave propagation analysis of porous FG nanoplates", Steel Compos. Struct., 29(1), 53-66. https://doi.org/10.12989/scs.2018.29.1.053.
- She, G.L., Liu, H.B. and Karami, B. (2020), "On resonance behavior of porous FG curved nanobeams", Steel Compos. Struct., 36(2), 179-186. https://doi.org/10.12989/scs.2020.36.2.179.
- Si, H., Shen, D., Xia, J. and Tahouneh, V. (2020), "Vibration behavior of functionally graded sandwich beam with porous core and nanocomposite layers", Steel Compos. Struct., 36(1), 1-16. https://doi.org/10.12989/scs.2020.36.1.001.
- Sobhy, M. and Zenkour, A.M. (2019), "Porosity and inhomogeneity effects on the buckling and vibration of doubleFGM nanoplates via a quasi-3D refined theory", Compos. Struct., 220, 289-303. https://doi.org/10.1016/j.compstruct.2019.03.096.
- Tahir, S.I., Chikh, A., Tounsi, A., Al-Osta, M.A., Al-Dulaijan, S.U. and Al-Zahrani, M.M. (2021), "Wave propagation analysis of a ceramic-metal functionally graded sandwich plate with different porosity distributions in a hygro-thermal environment", Compos. Struct., 269, 114030. https://doi.org/10.1016/j.compstruct.2021.114030.
- Thanh, C.L., Tran, L.V., Bui, T.Q., Nguyen, H.X. and Abdel Wahab, M. (2019), "Isogeometric analysis for size-dependent nonlinear thermal stability of porous FG microplates", Compos. Struct., 221, 110838. https://doi.org/10.1016/j.compstruct.2019.04.010.
- Wattanasakulpong, N. and Ungbhakorn, V. (2013), "Analytical solutions for bending, buckling and vibration responses of carbon nanotube-reinforced composite beams resting on elastic foundation", Comput. Mater. Sci., 71, 201-208. https://doi.org/10.1016/j.commatsci.2013.01.028.
- Wattanasakulpong, N. and Ungbhakorn, V. (2014), "Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities", Aerosp. Sci. Technol., 32(1), 111-120. https://doi.org/10.1016/j.ast.2013.12.002.
- Wu, D., Liu, A., Huang, Y., Huang, Y., Pi, Y. and Gao, W. (2018), "Dynamic analysis of functionally graded porous structures through finite element analysis", Eng. Struct., 165, 287-301. https://doi.org/10.1016/j.engstruct.2018.03.023.
- Xu, K., Yuan, Y. and Li, M. (2019), "Buckling behavior of functionally graded porous plates integrated with laminated composite faces sheets", Steel Compos. Struct., 32(5), 633-642. https://doi.org/10.12989/scs.2019.32.5.633.
- Yamaguchi, T., Kurosawa, Y. and Enomoto, H. (2009), "Damped vibration analysis using finite element method with approximated modal damping for automotive double walls with a porous material", J. Sound Vib., 325(1), 436-450. https://doi.org/10.1016/j.jsv.2009.03.018.
- Zare Jouneghani, F., Dimitri, R., Bacciocchi, M. and Tornabene, F. (2017), "Free vibration analysis of functionally graded porous doubly-curved shells based on the first-order shear deformation theory", Appl. Sci., 7(12), 1252. https://doi.org/10.3390/app7121252.
- Zenzen, R., Khatir, S., Belaidi, I., Le Thanh, C. and Wahab, M.A. (2020), "A modified transmissibility indicator and Artificial Neural Network for damage identification and quantification in laminated composite structures", Compos. Struct., 248, 112497. https://doi.org/10.1016/j.compstruct.2020.112497.
- Zhou, K., Huang, X., Tian, J. and Hua, H. (2018), "Vibration and flutter analysis of supersonic porous functionally graded material plates with temperature gradient and resting on elastic foundation", Compos. Struct., 204, 63-79. https://doi.org/10.1016/j.compstruct.2018.07.057.