DOI QR코드

DOI QR Code

Free vibration analysis of open-cell FG porous beams: analytical, numerical and ANN approaches

  • Received : 2021.02.17
  • Accepted : 2021.06.21
  • Published : 2021.07.25

Abstract

This paper constitutes an attempt to explore the influence of porosity on free vibration analysis of functionally graded (FG) beams with different boundary conditions using different efficient analytical and numerical approaches. The material properties of open-cell FG porous beams are estimated using a modified power-law with two different types of porosity distributions through the thickness direction of the FG beam namely even and non-even distributions. Hamilton's principle is used to derive the equations of motion of the FG porous beam with high-order shear deformation theory. The state-space approach is utilized to solve the problem in the analytical solution section. In addition to the theoretical solution, a simulation based on a displacement type of finite element method (FEM) was utilized to verify the analytical solution. For this purpose, three-dimensional shell beams were modeled using ABAQUS for the solution of the vibration problem of the FG porous beam. Furthermore, the Artificial Neural Networks (ANNs) technique is used to predict the effects of porosity distributions, porosity coefficient, slenderness ratio and boundary conditions on natural frequency variations of porous FG beam. The ANNs technique allows for an investigation of the effects of various parameters, including beam characteristics, material properties, geometric details and porosity distributions.

Keywords

References

  1. Addou, F.Y., Meradjah, M., Bousahla, A.A., Benachour, A., Bourada, F., Tounsi, A. and Mahmoud, S. (2019), "Influences of porosity on dynamic response of FG plates resting on Winkler/Pasternak/Kerr foundation using quasi 3D HSDT", Comput. Concrete, 24(4), 347-367. https://doi.org/10.12989/cac.2019.24.4.347.
  2. Adhikari, B., Dash, P. and Singh, B.N. (2020), "Buckling analysis of porous FGM sandwich plates under various types nonuniform edge compression based on higher order shear deformation theory", Compos. Struct., 251, 112597. https://doi.org/10.1016/j.compstruct.2020.112597.
  3. Aggarwal, C.C. (2018), Neural networks and deep learning, Springer
  4. Akbas, S.D. (2017), "Vibration and static analysis of functionally graded porous plates", Journal of Applied and Computational Mechanics. 3(3), 199-207. https://doi.org/10.22055/JACM.2017.21540.1107
  5. Al-Furjan, M., Habibi, M., Shan, L. and Tounsi, A. (2021), "On the vibrations of the imperfect sandwich higher-order disk with a lactic core using generalize differential quadrature method", Compos. Struct., 257, 113150. https://doi.org/10.1016/j.compstruct.2020.113150.
  6. Al Rjoub, Y.S. and Alshatnawi, J.A. (2020), "Free vibration of functionally-graded porous cracked plates", Structures, 28, 2392-2403. https://doi.org/10.1016/j.istruc.2020.10.059.
  7. Alimirzaei, S., Mohammadimehr, M. and Tounsi, A. (2019), "Nonlinear analysis of viscoelastic micro-composite beam with geometrical imperfection using FEM: MSGT electro-magnetoelastic bending, buckling and vibration solutions", Struct. Eng. Mech., 71(5), 485-502. https://doi.org/10.12989/sem.2019.71.5.485.
  8. Allahkarami, F., Tohidi, H., Dimitri, R. and Tornabene, F. (2020), "Dynamic stability of bi-directional functionally graded porous cylindrical shells embedded in an elastic foundation", Appl. Sci., 10(4), 1345. https://doi.org/10.3390/app10041345.
  9. Anitescu, C., Atroshchenko, E., Alajlan, N. and Rabczuk, T. (2019), "Artificial neural network methods for the solution of second order boundary value problems", Comput. Mater. Continua, 59(1), 345-359. https://doi.org/10.32604/cmc.2019.06641.
  10. Ansari, R., Faraji Oskouie, M., Gholami, R. and Sadeghi, F. (2016), "Thermo-electro-mechanical vibration of postbuckled piezoelectric Timoshenko nanobeams based on the nonlocal elasticity theory", Compos. Part B: Eng., 89, 316-327. https://doi.org/10.1016/j.compositesb.2015.12.029.
  11. Aria, A.I. and Friswell, M.I. (2019), "A nonlocal finite element model for buckling and vibration of functionally graded nanobeams", Compos. Part B: Eng., 166, 233-246. https://doi.org/10.1016/j.compositesb.2018.11.071.
  12. Aria, A.I., Rabczuk, T. and Friswell, M.I. (2019), "A finite element model for the thermo-elastic analysis of functionally graded porous nanobeams", Eur. J. Mech. - A/Solids, 77, 103767. https://doi.org/10.1016/j.euromechsol.2019.04.002.
  13. Bahadir, F. and Balik, F.S. (2017), "Predicting Displacement Data of Three-Dimensional Reinforced Concrete Frames with Different Strengthening Applications Using ANN", Periodica Polytechnica Civil Eng., 61(4), 843-856. https://doi.org/10.3311/PPci.9652.
  14. Bekkaye, T.H.L., Fahsi, B., Bousahla, A.A., Bourada, F., Tounsi, A., Benrahou, K.H., Tounsi, A. and Al-Zahrani, M.M. (2020), "Porosity-dependent mechanical behaviors of FG plate using refined trigonometric shear deformation theory", Comput. Concrete, 26(5), 439-450. http://dx.doi.org/10.12989/cac.2020.26.5.439.
  15. Berghouti, H., Adda Bedia, E., Benkhedda, A. and Tounsi, A. (2019), "Vibration analysis of nonlocal porous nanobeams made of functionally graded material", Adv. Nano Res., 7(5), 351-364. https://doi.org/10.12989/anr.2019.7.5.351.
  16. Bouazza, M., Kenouza, Y., Benseddiq, N. and Zenkour, A.M. (2017), "A two-variable simplified nth-higher-order theory for free vibration behavior of laminated plates", Compos. Struct., 182, 533-541. https://doi.org/10.1016/j.compstruct.2017.09.041.
  17. Bouderba, B. and Berrabah, H.M. (2020), "Bending response of porous advanced composite plates under thermomechanical loads", Mech. Based Des. Struct. Mach., 1-21. https://doi.org/10.1080/15397734.2020.1801464.
  18. Bre, F., Gimenez, J.M. and Fachinotti, V.D. (2018), "Prediction of wind pressure coefficients on building surfaces using artificial neural networks", Energ. Build., 158, 1429-1441. https://doi.org/10.1016/j.enbuild.2017.11.045.
  19. Chaabane, L.A., Bourada, F., Sekkal, M., Zerouati, S., Zaoui, F.Z., Tounsi, A., Derras, A., Bousahla, A.A. and Tounsi, A. (2019), "Analytical study of bending and free vibration responses of functionally graded beams resting on elastic foundation", Struct. Eng. Mech., 71(2), 185-196. https://doi.org/10.12989/sem.2019.71.2.185.
  20. Chaht, F.L., Kaci, A., Houari, M.S.A., Tounsi, A., Beg, O.A. and Mahmoud, S. (2015), "Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect", Steel Compos. Struct., 18(2), 425-442. https://doi.org/10.12989/scs.2015.18.2.425.
  21. Chen, D., Kitipornchai, S. and Yang, J. (2016), "Nonlinear free vibration of shear deformable sandwich beam with a functionally graded porous core", Thin-Walled Structures. 107 39-48. https://doi.org/10.1016/j.tws.2016.05.025
  22. Chen, D., Kitipornchai, S. and Yang, J. (2018), "Dynamic response and energy absorption of functionally graded porous structures", Mater. Design, 140, 473-487. https://doi.org/10.1016/j.matdes.2017.12.019.
  23. Chen, D., Yang, J. and Kitipornchai, S. (2015), "Elastic buckling and static bending of shear deformable functionally graded porous beam", Compos. Struct., 133, 54-61. https://doi.org/10.1016/j.compstruct.2015.07.052.
  24. Chen, D., Yang, J. and Kitipornchai, S. (2016), "Free and forced vibrations of shear deformable functionally graded porous beams", Int. J. Mech. Sci., 108-109, 14-22. https://doi.org/10.1016/j.ijmecsci.2016.01.025.
  25. Cuong-Le, T., Nguyen, K.D., Nguyen-Trong, N., Khatir, S., Nguyen-Xuan, H. and Abdel-Wahab, M. (2021), "A threedimensional solution for free vibration and buckling of annular plate, conical, cylinder and cylindrical shell of FG porouscellular materials using IGA", Compos. Struct., 259, 113216. https://doi.org/10.1016/j.compstruct.2020.113216.
  26. Dastjerdi, S., Malikan, M., Dimitri, R. and Tornabene, F. (2021), "Nonlocal elasticity analysis of moderately thick porous functionally graded plates in a hygro-thermal environment", Compos. Struct., 255, 112925. https://doi.org/10.1016/j.compstruct.2020.112925.
  27. Dehshahri, K., Nejad, M.Z., Ziaee, S., Niknejad, A. and Hadi, A. (2020), "Free vibrations analysis of arbitrary threedimensionally FGM nanoplates", Adv. Nano Res., 8(2), 115-134. https://doi.org/10.12989/anr.2020.8.2.115.
  28. Dey, S., Mukhopadhyay, T., Spickenheuer, A., Gohs, U. and Adhikari, S. (2016), "Uncertainty quantification in natural frequency of composite plates-An Artificial neural network based approach", Adv. Compos. Lett., 25(2), 096369351602500203. https://doi.org/10.1177/096369351602500203.
  29. Ebrahimi, F. and Habibi, S. (2016), "Deflection and vibration analysis of higher-order shear deformable compositionally graded porous plate", Steel Compos. Struct., 20(1), 205-225. http://dx.doi.org/10.12989/scs.2016.20.1.205.
  30. Ebrahimi, F. and Jafari, A. (2018), "A four-variable refined sheardeformation beam theory for thermo-mechanical vibration analysis of temperature-dependent FGM beams with porosities", Mech. Adv. Mater. Struct., 25(3), 212-224. https://doi.org/10.1080/15376494.2016.1255820.
  31. Ebrahimi, F., Seyfi, A., Dabbagh, A. and Tornabene, F. (2019), "Wave dispersion characteristics of porous graphene plateletreinforced composite shells", Struct. Eng. Mech., 71(1), 99-107. https://doi.org/10.12989/sem.2019.71.1.099.
  32. Gao, Y., Xiao, W.S. and Zhu, H. (2019), "Nonlinear bending of functionally graded porous nanobeam subjected to multiple physical load based on nonlocal strain gradient theory", Steel Compos. Struct., 31(5), 469-488. https://doi.org/10.12989/scs.2019.31.5.469.
  33. Goswami, S., Anitescu, C., Chakraborty, S. and Rabczuk, T. (2020), "Transfer learning enhanced physics informed neural network for phase-field modeling of fracture", Theor. Appl. Fract. Mech., 106, 102447. https://doi.org/10.1016/j.tafmec.2019.102447.
  34. Guellil, M., Saidi, H., Bourada, F., Bousahla, A.A., Tounsi, A., Al-Zahrani, M.M., Hussain, M. and Mahmoud, S. (2021), "Influences of porosity distributions and boundary conditions on mechanical bending response of functionally graded plates resting on Pasternak foundation", Steel Compos. Struct., 38(1), 1-15. http://dx.doi.org/10.12989/scs.2021.38.1.001.
  35. Guessas, H., Zidour, M., Meradjah, M. and Tounsi, A. (2018), "The critical buckling load of reinforced nanocomposite porous plates", Struct. Eng. Mech., 67(2), 115-123. https://doi.org/10.12989/sem.2018.67.2.115.
  36. Guo, H., Zhuang, X. and Rabczuk, T. (2021), "A deep collocation method for the bending analysis of Kirchhoff plate", arXiv preprint arXiv:2102.02617. http://dx.doi.org/10.32604/cmc.2019.06660.
  37. Hamdia, K.M., Ghasemi, H., Bazi, Y., AlHichri, H., Alajlan, N. and Rabczuk, T. (2019), "A novel deep learning based method for the computational material design of flexoelectric nanostructures with topology optimization", Finite Elem. Anal. Des., 165, 21-30. https://doi.org/10.1016/j.finel.2019.07.001.
  38. Hamdia, K.M., Zhuang, X. and Rabczuk, T. (2021), "An efficient optimization approach for designing machine learning models based on genetic algorithm", Neural Comput. Appl., 33(6), 1923-1933. https://doi.org/10.1007/s00521-020-05035-x.
  39. Hirane, H., Belarbi, M.-O., Houari, M.S.A. and Tounsi, A. (2021), "On the layerwise finite element formulation for static and free vibration analysis of functionally graded sandwich plates", Eng. with Comput., 1-29. https://doi.org/10.1007/s00366-020-01250-1
  40. Jouneghani, F.Z., Dimitri, R. and Tornabene, F. (2018), "Structural response of porous FG nanobeams under hygrothermo-mechanical loadings", Compos. Part B: Eng., 152, 71-78. https://doi.org/10.1016/j.compositesb.2018.06.023.
  41. Khatir, S., Boutchicha, D., Le Thanh, C., Tran-Ngoc, H., Nguyen, T.N. and Abdel-Wahab, M. (2020), "Improved ANN technique combined with Jaya algorithm for crack identification in plates using XIGA and experimental analysis", Theor. Appl. Fract. Mech., 107, 102554. https://doi.org/10.1016/j.tafmec.2020.102554.
  42. Khatir, S., Tiachacht, S., Thanh, C.L., Bui, T.Q. and Abdel Wahab, M. (2019), "Damage assessment in composite laminates using ANN-PSO-IGA and Cornwell indicator", Compos. Struct., 230, 111509. https://doi.org/10.1016/j.compstruct.2019.111509.
  43. Khdeir, A.A. and Reddy, J. (1994), "Free vibration of cross-ply laminated beams with arbitrary boundary conditions", Int. J. Eng. Sci., 32(12), 1971-1980. https://doi.org/10.1016/0020-7225(94)90093-0.
  44. Kitipornchai, S., Chen, D. and Yang, J. (2017), "Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets", Mater. Design, 116, 656-665. https://doi.org/10.1016/j.matdes.2016.12.061.
  45. Kumar, V., Singh, S.J., Saran, V.H. and Harsha, S.P. (2021), "Vibration characteristics of porous FGM plate with variable thickness resting on Pasternak's foundation", Eur. J. Mech. - A/Solids. 85, 104124. https://doi.org/10.1016/j.euromechsol.2020.104124
  46. Le Thanh, C., Nguyen, T.N., Vu, T.H., Khatir, S. and Wahab, M.A. (2020), "A geometrically nonlinear size-dependent hypothesis for porous functionally graded micro-plate", Eng. with Comput., 1-12. https://doi.org/10.1007/s00366-020-01154-0.
  47. Madenci, E. (2019), "A refined functional and mixed formulation to static analyses of fgm beams", Struct. Eng. Mech., 69(4), 427-437. https://doi.org/10.12989/sem.2019.69.4.427.
  48. Madenci, E. and Gulcu, S. (2020), "Optimization of flexure stiffness of FGM beams via artificial neural networks by mixed FEM", Struct. Eng. Mech., 75(5), 633-642. https://doi.org/10.12989/sem.2020.75.5.633.
  49. Madenci, E., Onuralp Ozkilic, Y. and Gemi, L. (2020), "Buckling and free vibration analyses of pultruded GFRP laminated composites: Experimental, numerical and analytical investigations", Compos. Struct., 254, 112806. https://doi.org/10.1016/j.compstruct.2020.112806.
  50. Madenci, E., Ozkilic, Y.O. and Gemi, L. (2020), "Experimental and theoretical investigation on flexure performance of pultruded GFRP composite beams with damage analyses", Compos. Struct., 242, 112162. https://doi.org/10.1016/j.compstruct.2020.112162.
  51. Madenci, E., Ozkilic, Y.O. and Gemi, L. (2020), "Theoretical Investigation on Static Analysis of Pultruded GFRP Composite Beams", Akademik Platform Muhendislik ve Fen Bilimleri Dergisi, 8(3), 483-490. https://doi.org/10.21541/apjes.734770.
  52. Madenci, E. and Ozutok, A. (2020), "Variational approximate for high order bending analysis of laminated composite plates", Struct. Eng. Mech., 73(1), 97-108. https://doi.org/10.12989/sem.2020.73.1.097.
  53. Magnucka-Blandzi, E. (2008), "Axi-symmetrical deflection and buckling of circular porous-cellular plate", Thin-Wall. Struct., 46(3), 333-337. https://doi.org/10.1016/j.tws.2007.06.006.
  54. Magnucka-Blandzi, E. (2010), "Non-linear analysis of dynamic stability of metal foam circular plate", J. Theor. Appl. Mech., 48(1), 207-217.
  55. Magnucki, K., Malinowski, M. and Kasprzak, J. (2006), "Bending and buckling of a rectangular porous plate", Steel Compos. Struct., 6(4), 319-333. https://doi.org/10.12989/scs.2006.6.4.319.
  56. Magnucki, K. and Stasiewicz, P. (2004), "Elastic buckling of a porous beam", J. Theor. Appl. Mech., 42(4), 859-868.
  57. Magnucki, K., Witkowski, D. and Lewinski, J. (2020), "Bending and free vibrations of beams with symmetrically varying mechanical properties-Shear effect", Mech. Adv. Mater. Struct., 27(4), 325-332. https://doi.org/10.1080/15376494.2018.1472350.
  58. Malikan, M., Tornabene, F. and Dimitri, R. (2018), "Nonlocal three-dimensional theory of elasticity for buckling behavior of functionally graded porous nanoplates using volume integrals", Mater. Res. Express, 5(9), 095006. https://doi.org/10.1088/2053-1591/aad4c3
  59. Medani, M., Benahmed, A., Zidour, M., Heireche, H., Tounsi, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S. (2019), "Static and dynamic behavior of (FG-CNT) reinforced porous sandwich plate using energy principle", Steel Compos. Struct., 32(5), 595-610. https://doi.org/10.12989/scs.2019.32.5.595.
  60. Mekerbi, M., Benyoucef, S., Mahmoudi, A., Bourada, F. and Tounsi, A. (2019), "Investigation on thermal buckling of porous FG plate resting on elastic foundation via quasi 3D solution", Struct. Eng. Mech., 72(4), 513-524. https://doi.org/10.12989/sem.2019.72.4.513.
  61. Mirjavadi, S.S., Afshari, B.M., Shafiei, N., Hamouda, A. and Kazemi, M. (2017), "Thermal vibration of two-dimensional functionally graded (2D-FG) porous Timoshenko nanobeams", Steel Compos. Struct., 25(4), 415-426. https://doi.org/10.12989/scs.2017.25.4.415.
  62. Mojahedin, A., Jabbari, M., Khorshidvand, A. and Eslami, M. (2016), "Buckling analysis of functionally graded circular plates made of saturated porous materials based on higher order shear deformation theory", Thin-Wall. Struct., 99, 83-90. https://doi.org/10.1016/j.tws.2015.11.008.
  63. Mojahedin, A., Joubaneh, E.F. and Jabbari, M. (2014), "Thermal and mechanical stability of a circular porous plate with piezoelectric actuators", Acta Mechanica, 225(12), 3437-3452. https://doi.org/10.1007/s00707-014-1153-x.
  64. Ozkilic, Y.O., Aksoylu, C. and Arslan, M.H. (2021), "Experimental and numerical investigations of steel fiber reinforced concrete dapped-end purlins", J. Build. Eng., 36, 102119. https://doi.org/10.1016/j.jobe.2020.102119.
  65. Ozkilic, Y.O., Madenci, E. and Gemi, L. (2020), "Tensile and compressive behaviors of the pultruded GFRP lamina", Turkish J. Eng. (TUJE), 4(4), 169-175. https://doi.org/10.31127/tuje.631481.
  66. Ozkilic, Y.O., Yazman, S., Aksoylu, C., Arslan, M.H. and Gemi, L. (2021), "Numerical investigation of the parameters influencing the behavior of dapped end prefabricated concrete purlins with and without CFRP strengthening", Constr. Build. Mater., 275, 122173. https://doi.org/10.1016/j.conbuildmat.2020.122173.
  67. Ozutok, A. and Madenci, E. (2013), "Free vibration analysis of cross-ply laminated composite beams by mixed finite element formulation", Int. J. Struct. Stab. Dynam., 13(2), 1250056. https://doi.org/10.1142/S0219455412500563.
  68. O zutok, A. and Madenci, E. (2017), "Static analysis of laminated composite beams based on higher-order shear deformation theory by using mixed-type finite element method", Int. J. Mech. Sci., 130, 234-243. https://doi.org/10.1016/j.ijmecsci.2017.06.013.
  69. O zutok, A., Madenci, E. and Kadioglu, F. (2014), "Free vibration analysis of angle-ply laminate composite beams by mixed finite element formulation using the Gateaux differential", Sci. Eng. Compos. Mater., 21(2), 257-266. https://doi.org/10.1515/secm2013-0043
  70. Rastbood, A., Gholipour, Y. and Majdi, A. (2017), "Stress Analysis of Segmental Tunnel Lining Using Artificial Neural Network", Periodica Polytechnica Civil Eng., 61(4), 664-676. https://doi.org/10.3311/PPci.9700.
  71. Reddy, J.N. (1984), "A Simple Higher-Order Theory for Laminated Composite Plates", J. Appl. Mech., 51(4), 745-752. https://doi.org/10.1115/1.3167719.
  72. Reddy, J.N. (2004), Mechanics of laminated composite plates and shells: theory and analysis, CRC press
  73. Reddy, M.R.S., Reddy, B.S., Reddy, V.N. and Sreenivasulu, S. (2012), "Prediction of Natural Frequency of Laminated Composite Plates Using Artificial Neural Networks", Engineering, 4(6), 9. https://doi.org/10.4236/eng.2012.46043.
  74. Rezaei, A.S., Saidi, A.R., Abrishamdari, M. and Mohammadi, M.H.P. (2017), "Natural frequencies of functionally graded plates with porosities via a simple four variable plate theory: An analytical approach", Thin-Wall. Struct., 120, 366-377. https://doi.org/10.1016/j.tws.2017.08.003.
  75. Sadoughifar, A., Farhatnia, F., Izadinia, M. and Talaeitaba, S.B. (2019), "Nonlinear bending analysis of porous FG thick annular/circular nanoplate based on modified couple stress and two-variable shear deformation theory using GDQM", Steel Compos. Struct., 33(2), 307-318. https://doi.org/10.12989/scs.2019.33.2.307.
  76. Safaei, B. (2020), "The effect of embedding a porous core on the free vibration behavior of laminated composite plates", Steel Compos. Struct., 35(5), 659-670. https://doi.org/10.12989/scs.2020.35.5.659.
  77. Samaniego, E., Anitescu, C., Goswami, S., Nguyen-Thanh, V.M., Guo, H., Hamdia, K., Zhuang, X. and Rabczuk, T. (2020), "An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications", Comput. Method. Appl. Mech. Eng., 362, 112790. https://doi.org/10.1016/j.cma.2019.112790.
  78. Shafiei, N., Mousavi, A. and Ghadiri, M. (2016), "On sizedependent nonlinear vibration of porous and imperfect functionally graded tapered microbeams", Int. J. Eng. Sci., 106, 42-56. https://doi.org/10.1016/j.ijengsci.2016.05.007.
  79. Shahsavari, D., Karami, B. and Li, L. (2018), "A high-order gradient model for wave propagation analysis of porous FG nanoplates", Steel Compos. Struct., 29(1), 53-66. https://doi.org/10.12989/scs.2018.29.1.053.
  80. She, G.L., Liu, H.B. and Karami, B. (2020), "On resonance behavior of porous FG curved nanobeams", Steel Compos. Struct., 36(2), 179-186. https://doi.org/10.12989/scs.2020.36.2.179.
  81. Si, H., Shen, D., Xia, J. and Tahouneh, V. (2020), "Vibration behavior of functionally graded sandwich beam with porous core and nanocomposite layers", Steel Compos. Struct., 36(1), 1-16. https://doi.org/10.12989/scs.2020.36.1.001.
  82. Sobhy, M. and Zenkour, A.M. (2019), "Porosity and inhomogeneity effects on the buckling and vibration of doubleFGM nanoplates via a quasi-3D refined theory", Compos. Struct., 220, 289-303. https://doi.org/10.1016/j.compstruct.2019.03.096.
  83. Tahir, S.I., Chikh, A., Tounsi, A., Al-Osta, M.A., Al-Dulaijan, S.U. and Al-Zahrani, M.M. (2021), "Wave propagation analysis of a ceramic-metal functionally graded sandwich plate with different porosity distributions in a hygro-thermal environment", Compos. Struct., 269, 114030. https://doi.org/10.1016/j.compstruct.2021.114030.
  84. Thanh, C.L., Tran, L.V., Bui, T.Q., Nguyen, H.X. and Abdel Wahab, M. (2019), "Isogeometric analysis for size-dependent nonlinear thermal stability of porous FG microplates", Compos. Struct., 221, 110838. https://doi.org/10.1016/j.compstruct.2019.04.010.
  85. Wattanasakulpong, N. and Ungbhakorn, V. (2013), "Analytical solutions for bending, buckling and vibration responses of carbon nanotube-reinforced composite beams resting on elastic foundation", Comput. Mater. Sci., 71, 201-208. https://doi.org/10.1016/j.commatsci.2013.01.028.
  86. Wattanasakulpong, N. and Ungbhakorn, V. (2014), "Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities", Aerosp. Sci. Technol., 32(1), 111-120. https://doi.org/10.1016/j.ast.2013.12.002.
  87. Wu, D., Liu, A., Huang, Y., Huang, Y., Pi, Y. and Gao, W. (2018), "Dynamic analysis of functionally graded porous structures through finite element analysis", Eng. Struct., 165, 287-301. https://doi.org/10.1016/j.engstruct.2018.03.023.
  88. Xu, K., Yuan, Y. and Li, M. (2019), "Buckling behavior of functionally graded porous plates integrated with laminated composite faces sheets", Steel Compos. Struct., 32(5), 633-642. https://doi.org/10.12989/scs.2019.32.5.633.
  89. Yamaguchi, T., Kurosawa, Y. and Enomoto, H. (2009), "Damped vibration analysis using finite element method with approximated modal damping for automotive double walls with a porous material", J. Sound Vib., 325(1), 436-450. https://doi.org/10.1016/j.jsv.2009.03.018.
  90. Zare Jouneghani, F., Dimitri, R., Bacciocchi, M. and Tornabene, F. (2017), "Free vibration analysis of functionally graded porous doubly-curved shells based on the first-order shear deformation theory", Appl. Sci., 7(12), 1252. https://doi.org/10.3390/app7121252.
  91. Zenzen, R., Khatir, S., Belaidi, I., Le Thanh, C. and Wahab, M.A. (2020), "A modified transmissibility indicator and Artificial Neural Network for damage identification and quantification in laminated composite structures", Compos. Struct., 248, 112497. https://doi.org/10.1016/j.compstruct.2020.112497.
  92. Zhou, K., Huang, X., Tian, J. and Hua, H. (2018), "Vibration and flutter analysis of supersonic porous functionally graded material plates with temperature gradient and resting on elastic foundation", Compos. Struct., 204, 63-79. https://doi.org/10.1016/j.compstruct.2018.07.057.