Acknowledgement
This research was supported by the Korea Institute of Energy Technology Evaluation and Planning funded by the Korea government MOTIE (2019281010007A)
References
- P. H. Heiko Ammermann Mirela Atanasiu, Jo Aylor, Markus Kaufmann, Ovidiu Tisler, "Advancing Europe's Energy Systems: Stationary Fuel Cells in Distributed Generation," Roland Berger Strategy Consultants, Munich, 2015.
- S. C. Lee and W. Y. Jung, "Analogical understanding of the Ragone plot and a new categorization of energy devices," Energy Procedia, vol. 88, pp. 526-530, 2016, doi: 10.1016/j.egypro.2016.06.073.
- B. James, "Fuel Cell Systems Analysis, US DOE Annual Merit Review," Washington DC, 2019.
- B. Choi et al., "High Performance CeO[sub 2]- and Ce[sub 0.8]Sm[sub 0.2]O[sub 2]-Modified Pt/C Catalysts for the Cathode of a DMFC," J. Electrochem. Soc., vol. 156, no. 7, p. B801, 2009, doi: 10.1149/1.3125803.
- B. Choi, H. Yoon, I. S. Park, J. Jang, and Y. E. Sung, "Highly dispersed Pt nanoparticles on nitrogen-doped magnetic carbon nanoparticles and their enhanced activity for methanol oxidation," Carbon N. Y., vol. 45, no. 13, pp. 2496-2501, 2007, doi: 10.1016/j.carbon.2007.08.028.
- B. Choi, D. A. Langlois, N. Mack, C. M. Johnston, and Y. S. Kim, "The Effect of Cathode Structures on Nafion Membrane Durability," J. Electrochem. Soc., vol. 161, no. 12, pp. F1154-F1162, 2014, doi: 10.1149/2.0151412jes.
- B. Choi et al., "Enhanced methanol tolerance of highly Pd rich Pd-Pt cathode electrocatalysts in direct methanol fuel cells," Electrochim. Acta, vol. 164, pp. 235-242, 2015, doi: 10.1016/j.electacta.2015.02.203.
- R. S. Yeo, "Dual cohesive energy densities of perfluorosulphonic acid (Nafion) membrane," Polymer (Guildf)., vol. 21, pp. 432-435, 1980, doi: 10.1016/0032-3861(80)90015-4.
- Y. S. Kim, C. F. Welch, R. P. Hjelm, N. H. Mack, A. Labouriau, and E. B. Orler, "Origin of Toughness in Dispersion-Cast Na fi on Membranes," Macromolecules, vol. 48, pp. 2161-2172, 2015, doi: 10.1021/ma502538k.
- M. Bernt and H. A. Gasteiger, "Influence of Ionomer Content in IrO 2/TiO 2 Electrodes on PEM Water Electrolyzer Performance," J. Electrochem. Soc., vol. 163, no. 11, pp. F3179-F3189, 2016, doi: 10.1149/2.0231611jes.
- D. Banham, J. Choi, T. Kishimoto, and S. Ye, "Integrating PGM-Free Catalysts into Catalyst Layers and Proton Exchange Membrane Fuel Cell Devices," Adv. Mater., vol. 31, pp. 1804846-1804851, 2019, doi: 10.1002/adma.201804846.
- D. Banham et al., "Critical advancements in achieving high power and stable nonprecious metal catalyst - based MEAs for real-world proton exchange membrane fuel cell applications," Sci. Adv., vol. 4, p. eaar7180, 2018, doi: 10.1126/sciadv.aar7180.
- M. S. Wilson, J. A. Valerio, and S. Gottesfeld, "Low platinum loading electrodes for polymer electrolyte fuel cells fabridated thermoplastic ionomers," Electrochim. Acta, vol. 40, no. 3, pp. 355-363, 1995, doi: 10.1016/0013-4686(94)00272-3.
- M. S. Wilson and S. Gottesfeld, "Thin-film catalyst layers for polymer electrolyte fuel cell electrodes," J. Appl. Electrochem., vol. 22, pp. 1-7, 1992, doi: 10.1007/BF01093004.
- S. Q. Song et al., "Direct methanol fuel cells: The effect of electrode fabrication procedure on MEAs structural properties and cell performance," J. Power Sources, vol. 145, pp. 495-501, 2005, doi: 10.1016/j.jpowsour.2005.02.069.
- S. Jeon et al., "Effect of ionomer content and relative humidity on polymer electrolyte membrane fuel cell (PEMFC) performance of membrane-electrode assemblies (MEAs) prepared by decal transfer method," Int. J. Hydrogen Energy, vol. 35, no. 18, pp. 9678-9686, 2010, doi: 10.1016/j.ijhydene.2010.06.044.