DOI QR코드

DOI QR Code

Investigation on modulation of multi-frequency ultrasonic waves in structures with quadratic nonlinearity

  • Received : 2020.03.14
  • Accepted : 2021.04.04
  • Published : 2021.07.25

Abstract

In this study, the modulation of multiple frequency content of a single ultrasonic wave in nonlinear structures is investigated analytically, numerically and experimentally. An experimental technique is proposed based on nonlinear lamb wave propagation in aluminum bars using piezoelectric wafer active sensors (PWAS) to study intrinsic nonlinearity of structures. First, a one-dimensional analytical procedure is developed to study the modulation of one dimensional wave with multiple-frequency content in isotropic medium with quadratic nonlinearity. This procedure is implemented to study modulation of frequency contents of a well-known tone burst signal in nonlinear medium. Then, predictions obtained by the proposed analytical procedure are compared with the results of finite element model, which show strong correlations. The experimental and analytical results reveal that in excitation with a train of tone burst, due to frequency modulation, some new harmonics including a strong sub harmonic generation with frequency of f0/Np appear in the response. The amplitude of this harmonic is even higher than common second harmonic generation (2f0). This can be seen in the experimental results when the excitation frequencies are correctly selected. Finally, it is explained that, why the new sub harmonic generation is less affected by the nonlinearity induced by the excitation system.

Keywords

References

  1. Aslam, M., Bijudas, C.R., Nagarajan, P. and Remanan, M. (2020), "Numerical and Experimental Investigation of Nonlinear Lamb Wave Mixing at Low Frequency", J. Aerosp. Eng., 33(4), p. 04020037. https://doi.org/10.1061/(ASCE)AS.1943-5525.0001146
  2. Barnard, D.J., Brasche, L.J.H., Raulerson, D. and Degtyar, A.D. (2003), "Monitoring fatigue damage accumulation with Rayleigh wave harmonic generation measurements", Review of Progress in QNDE, 22, 1393-1400. https://doi.org/10.1063/1.1570294
  3. Cantrell, J.H. (2003), Fundamentals and Applications of Nonlinear Ultrasonic Nondestructive Evaluation, CRC Press.
  4. Chen, Z., Tang, G., Zhao, Y., Jacobs, J.L. and Qu, J. (2014), "Mixing of collinear plane wave pulses in elastic solids with quadratic nonlinearity", J. Acoust. Soc. Am, 136, 2389-2404. https://doi.org/10.1121/1.4896567
  5. Croxford, A.J., Wilcox, P.D., Drinkwater, B.W. and Nagy, P.B. (2009), "The use of non-collinear mixing for nonlinear ultrasonic detection of plasticity and fatigue", J. Acoust. Soc. Am., 126(5), EL117-122. https://doi.org/10.1121/1.3231451
  6. Dao, P.B., Klepka, A., Pieczonka, L., Aymerich, F. and Staszewski, W.J. (2017), "Impact damage detection in smart composites using nonlinear acoustics-cointegration analysis for removal of undesired load effect", Smart Mater. Struct., 26(3), 0350. https://doi.org/10.1088/1361-665X/aa5744
  7. Demcenko, A., Akkerman, R., Nagy, P.B. and Loendersloot, R. (2012), "Non-collinear wave mixing for non-linear ultrasonic detection of physical ageing in PVC", NDT & E Int., 49, 34-39. https://doi.org/10.1016/j.ndteint.2012.03.005
  8. Deng, M. (2009), "Cumulative second-harmonic generation of Lamb-mode propagation in a solid plate", J. Appl. Phys., 85, 3051-3058. https://doi.org/10.1063/1.369642
  9. Deng, M. and Pei, J. (2007), "Assessment of accumulated fatigue damage in solid plates using nonlinear Lamb wave approach", Appl. Phys. Lett., 90(12), 121902. https://doi.org/10.1063/1.2714333
  10. Ding, X., Zhao, Y., Hu, N., Liu, Y., Zhang, J. and Deng, M. (2018), "Experimental and numerical study of nonlinear Lamb waves of a low-frequency S0 mode in plates with quadratic nonlinearity", Materials, 11(11), 2096. https://doi.org/10.3390/ma11112096
  11. Ding, X., Zhao, Y., Deng, M., Shui, G. and Hu, N. (2020), "One-way Lamb mixing method in thin plates with randomly distributed micro-cracks", Int. J. Mech. Sci., 171, 105371. https://doi.org/10.1016/j.ijmecsci.2019.105371
  12. Fierro, G.P.M. and Meo, M. (2015), "Residual fatigue life estimation using a nonlinear ultrasound modulation method", Smart Mater. Struct., 24(2), p. 025040. https://doi.org/10.1088/0964-1726/24/2/025040
  13. Ginzburg, D., Ciampa, F., Scarselli, G. and Meo, M. (2017), "SHM of single lap adhesive joints using subharmonic frequencies", Smart Mater. Struct., 26(10), 105018. https://doi.org/10.1088/1361-665X/aa815c
  14. Hikata, A., Chick, B.B. and Elbaum, C. (1965), "Dislocation contribution to the second harmonic generation of ultrasonic waves", J. Appl. Phys., 36, 229. https://doi.org/10.1063/1.1713881
  15. Hong, X., Ruan, J., Liu, G., Wang, T., Li, Y. and Song, G. (2016), "Synergetics based damage detection of frame structures using piezoceramic patches", Smart Struct. Syst., Int. J., 17(2), 167-194. https://doi.org/10.12989/sss.2016.17.2.167
  16. Huifeng, Z., Liuchen, H., Piaopiao, F., Yuebing, W. and Yonggang, C. (2019), "The study of micro-crack localisation based on vibro-acoustic modulation and time reversal method", Nondestruct. Test. Eval., 34(3), 324-338. https://doi.org/10.1080/10589759.2019.1600687
  17. Jeong, H. and Barnard, D. (2011), "Measurements of sub-and super harmonic waves at the interfaces of fatigue-cracked CT specimen", J. Korean Soc. Nondestruct. Test., 31(1), 1-10.
  18. Jhang, K.Y. (2009), "Nonlinear ultrasonic techniques for nondestructive assessment of micro damage in material: a review", Int. J. Precis. Eng. Manuf., 10(1), 123-135. https://doi.org/10.1007/s12541-009-0019-y
  19. Jingpin, J., Junjun, S., Guanghai, L., Bin, W. and Cunfu, H. (2015), "Evaluation of the intergranular corrosion in austenitic stainless steel using collinear wave mixing method", NDT & E Int., 69, 1-8. https://doi.org/10.1016/j.ndteint.2014.09.001
  20. Jingpin, J., Xiangji, M., Cunfu, H. and Bin, W. (2017a), "Nonlinear Lamb wave-mixing technique for micro-crack detection in plates", NDT & E Int., 85, 63-71. https://doi.org/10.1016/j.ndteint.2016.10.006
  21. Jingpin, J., Hongtao, L., Cunfu, H. and Bin, W. (2017b), "Fatigue crack evaluation using the non-collinear wave mixing technique", Smart Mater. Struct., 26(6), 065005. https://doi.org/10.1088/1361-665X/aa6c43
  22. Kamas, T., Poddar, B., Lin, B. and Yu, L.L. (2015), "Assessment of temperature effect in structural health monitoring with piezoelectric wafer active sensors", Smart Struct. Syst., Int. J., 16(5), 835-851. http://dx.doi.org/10.12989/sss.2015.16.5.835
  23. Karayannis, C.G., Voutetaki, M.E., Chalioris, C.E., Providakis, C.P. and Angeli, G.M. (2015), "Detection of flexural damage stages for RC beams using piezoelectric sensors (PZT)", Smart Struct. Syst., Int. J., 15(4), 997-1018. https://doi.org/10.12989/sss.2015.15.4.997
  24. Klepka, A., Dziedziech, K., Mrowka, J. and Gorski, J. (2019), "Experimental investigation of modulation effects for contacttype interfaces in vibro-acoustic modulation tests", Struct. Health Monitor., 1475921719857624. https://doi.org/10.1177/1475921719857624
  25. Lee, D.J., Cho, Y. and Li, W. (2014), "A feasibility study for Lamb wave mixing nonlinear technique", AIP Conference Proceedings, Vol. 1581, No. 1, pp. 662-666, American Institute of Physics. https://doi.org/10.1063/1.4864883
  26. Li, F., Zhao, Y., Cao, P. and Hu, N. (2018), "Mixing of ultrasonic Lamb waves in thin plates with quadratic nonlinearity", Ultrasonics, 87, 33-43. https://doi.org/10.1016/j.ultras.2018.02.005
  27. Li, W., Chen, B. and Cho, Y. (2020), "Nonlinear feature of phase matched Lamb waves in solid plate", Appl. Acoust., 160, 107124. https://doi.org/10.1016/j.apacoust.2019.107124
  28. Liu, M., Tang, G., Jacobs, L.J. and Qu, J. (2012), "Measuring acoustic nonlinearity parameter using collinear wave mixing", J. Appl. Phys., 112, 024908. https://doi.org/10.1063/1.4739746
  29. Liu, P., Sohn, H., Yang, S. and Lim, H.J. (2016), "Baseline-free fatigue crack detection based on spectral correlation and nonlinear wave modulation", Smart Mater. Struct., 25(12), 125034. https://doi.org/10.1088/0964-1726/25/12/125034
  30. Malfense-Fierro, G.P. (2014), "Development of nonlinear ultrasound techniques for multidisciplinary engineering applications", Ph.D. Dissertation; University of Bath, Bath, England.
  31. Masurkar, F., Tse, P. and Yelve, N.P. (2018), "Evaluation of inherent and dislocation induced material nonlinearity in metallic plates using Lamb waves", Appl. Acoust., 136, 76-85. https://doi.org/10.1016/j.apacoust.2018.02.011
  32. Metya, A.K., Tarafder, S. and Balasubramaniam, K. (2018), "Nonlinear Lamb wave mixing for assessing localized deformation during creep", NDT & E Int., 98, 89-94. https://doi.org/10.1016/j.ndteint.2018.04.013
  33. Nagy, P.B., Qu, J. and Jacobs, L.J. (2013), "Finite-size effects on the quasistatic displacement pulse in a solid specimen with quadratic nonlinearity", J. Acoust. Soc. Am., 134(3), 1760-1774. https://doi.org/10.1121/1.4817840
  34. Peng, G., Yuan, S.F. and Xu, X. (2006), "Damage detection on two-dimensional structure based on active Lamb waves", Smart Struct. Syst., Int. J., 2(2), 171-188. https://doi.org/10.12989/sss.2006.2.2.171
  35. Prawin, J. and Rao, A. (2018), "Detection of nonlinear structural behavior using time-frequency and multivariate analysis", Smart Struct. Syst., Int. J., 22(6), 711-725. https://doi.org/10.12989/sss.2018.22.6.711
  36. Pruell, C., Kim, J.Y., Qu, J. and Jacobs, L.J. (2009), "Evaluation of fatigue damage using nonlinear guided waves", Smart Mater. Struct., 18, 035003. https://doi.org/10.1088/0964-1726/18/3/035003
  37. Rajabi, M., Shamshirsaz, M. and Naraghi, M. (2017), "Crack detection in rectangular plate by electromechanical impedance method: modeling and experiment", Smart Struct. Syst., Int. J., 19(4), 361-369. https://doi.org/10.12989/sss.2017.19.4.361
  38. Singh, A.K., Tan, V.B., Tay, T.E. and Lee, H.P. (2019), "Experimental investigations into nonlinear vibro-acoustics for detection of delaminations in a composite laminate", J. Nondestruct. Eval. Diagn. Progn. Eng. Syst., 2(1), 011002. https://doi.org/10.1115/1.4041122
  39. Solodov, I. (2014), "Resonant Acoustic Nonlinearity of Defects for Highly-Efficient Nonlinear NDE", J. Nondestr. Eval., 33(2), 252-262. https://doi.org/10.1007/s10921-014-0229-9
  40. Sun, M., Xiang, Y., Deng, M., Tang, B., Zhu, W. and Xuan, F.Z. (2019), "Experimental and numerical investigations of nonlinear interaction of counter-propagating Lamb waves", Appl. Phys. Lett., 114(1), 011902. https://doi.org/10.1063/1.5061740
  41. Tang, G., Liu, M., Jacobs, L.J. and Qu, J. (2014), "Detecting localized plastic strain by a scanning collinear wave mixing method", J. Nondestruct. Eval., 33(2), 196-204. https://doi.org/10.1007/s10921-014-0224-1
  42. Xiang, Y., Deng, M. and Xuan, F.-Z. (2014), "Thermal degradation evaluation of HP40Nb alloy steel after long term service using a nonlinear ultrasonic technique", J. Nondestruct. Eval., 33, 279-287. https://doi.org/10.1007/s10921-013-0222-8
  43. Yang, S., Jung, J., Liu, P., Lim, H.J., Yi, Y., Sohn, H. and Bae, I.H. (2019), "Ultrasonic wireless sensor development for online fatigue crack detection and failure warning", Struct. Eng. Mech., 69(4), 407-416. https://doi.org/10.12989/sem.2019.69.4.407
  44. Yu, L. and Giurgiutiu, V. (2005), "Advanced signal processing for enhanced damage detection with piezoelectric wafer active sensors", Smart Struct. Syst., Int. J., 1(2), 185-215. https://doi.org/10.12989/sss.2005.1.2.185
  45. Zhang, Z., Nagy, P.B. and Hassan, W. (2016), "Analytical and numerical modeling of non-collinear shear wave mixing at an imperfect interface", Ultrasonics, 65, 165-176. https://doi.org/10.1016/j.ultras.2015.09.021
  46. Zhang, Z., Xu, H., Liao, Y., Su, Z. and Xiao, Y. (2017a), "Vibroacoustic modulation (VAM)-inspired structural integrity monitoring and its applications to bolted composite joints", Compos. Struct., 176, 505-515. https://doi.org/10.1016/j.compstruct.2017.05.043
  47. Zhang, M., Xiao, L., Qu, W. and Lu, Y. (2017b), "Damage detection of fatigue cracks under nonlinear boundary condition using subharmonic resonance", Ultrasonics, 77, 152-159. https://doi.org/10.1016/j.ultras.2017.02.001
  48. Zhao, X., Gao, H., Zhang, G., Ayhan, B., Yan, F., Kwan, C. and Rose, J. (2007), "Active health monitoring of an aircraft wing with embedded piezoelectric sensor/actuator network: I. Defect detection, localization and growth monitoring", Smart Mater. Struct., 16(4), 1208. https://doi.org/10.1088/0964-1726/16/4/032
  49. Zhao, Y., Chen, Z., Cao, P. and Qiu, Y. (2015), "Experiment and FEM study of one-way mixing of elastic waves with quadratic nonlinearity", NDT & E Int., 72, 33-40. https://doi.org/10.1016/j.ndteint.2015.02.004
  50. Zhou, C., Hong, M., Su, Z., Wang, Q. and Cheng, L. (2012), "Evaluation of fatigue cracks using nonlinearities of acoustoultrasonic waves acquired by an active sensor network", Smart Mater. Struct., 22(1), 015018. https://doi.org/10.1088/0964-1726/22/1/015018