Acknowledgement
The authors express their appreciation for the support from the program of China Scholarships Council (No. 201706090092), the Priority Academic Program of Jiangsu Higher Education Institutions (CE02-1-48), the Fundamental Research Funds for the Central University - Postgraduate Research\&Practice Innovation Program of Jiangsu Province (KYCX170126), Distinguished Young Scholars (Grant Number: 51625803), Changjiang Scholars Program of Ministry of Education of China, Distinguished Professor Program of Jiangsu Province, Peruvian National Council of Science Technology and Technological Innovation (CONCYTEC) Fellowship, the US National Science Foundation (Award No. CMMI-1661621) and Purdue University's System Collaboratory Fellows Program.
References
- Aldaikh, H., Alexander, N.A., Ibraim, E. and Oddbjornsson, O. (2015), "Two dimensional numerical and experimental models for the study of structure-soil-structure interaction involving three buildings", Comput. Struct., 150, 79-91. https://doi.org/10.1016/j.compstruc.2015.01.003
- Blakeborough, A., Williams, M.S., Darby, A.P. and Williams, D.M. (2001), "The development of real-time substructure testing", Philos. Trans. R. Soc. Lond. Ser. A-Math. Phys. Eng. Sci., 359(1786), 1869-1891. https://doi.org/10.1098/rsta.2001.0877
- Calhoun, S.J. and Harvey, P.S. (2018), "Enhancing the teaching of seismic isolation using additive manufacturing", Eng. Struct., 167, 494-503. https://doi.org/10.1016/j.engstruct.2018.03.084
- Chae, Y., Kazemibidokhti, K. and Ricles, J.M. (2013), "Adaptive time series compensator for delay compensation of servo-hydraulic actuator systems for real-time hybrid simulation", Earthq. Eng. Struct. Dyn., 42(11), 1697-1715. https://doi.org/10.1002/eqe.2294
- Chen, P.C. and Chen, P.C. (2020), "Robust stability analysis of real-time hybrid simulation considering system uncertainty and delay compensation", Smart. Struct. Syst., Int. J., 25(6), 719-732. http://dx.doi.org/10.12989/sss.2020.25.6.719
- Chen, P.C., Hsu, S.C., Zhong, Y.J. and Wang, S.J. (2019), "Real-time hybrid simulation of smart base-isolated raised floor systems for high-tech industry", Smart. Struct. Syst., Int. J., 23(1), 91-106. http://dx.doi.org/10.12989/sss.2019.23.1.091
- Chopra, A.K. (2012). Dynamics of Structures: Theory and Applications to Earthquake Engineering, (4th Edition), Pearson Education, Inc., Upper Saddle River, NJ, USA.
- Condori, J., Maghareh, A., Orr, J., Li, H.W., Montoya, H., Dyke, S., Gill, C. and Prakash, A. (2020), "Exploiting parallel computing to control uncertain nonlinear systems in real-time", Exp. Tech., 44(6), 735-749. https://doi.org/10.1007/s40799-020-00373-w
- Constantinou, M.C. and Kneifati, M.C. (1988), "Dynamics of Soil-Base-Isolated-Structure Systems", J. Struct. Eng., 114(1), 211-221. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:1(211)
- Dyke, S.J., Spencer, B.F., Quast, P. and Sain, M.K. (1995), "Role of control-structure interaction in protective system design", J. Eng. Mech., 121(2), 322-338. https://doi.org/10.1061/(ASCE)0733-9399(1995)121:2(322)
- Ebeido, A., Zayed, M., Kim, K., Wilson, P. and Elgamal, A. (2018), "Large Scale Geotechnical Shake Table Testing at the University of California San Diego", International Congress and Exhibition, Cham, Switzerland, November.
- Gao, X.Y., Castaneda, N. and Dyke, S.J. (2013), "Real time hybrid simulation: from dynamic system, motion control to experimental error", Earthq. Eng. Struct. Dyn., 42(6), 815-832. https://doi.org/10.1002/eqe.2246
- Ghahari, S.F., Abazarsa, F., Ghannad, M.A. and Taciroglu, E. (2013), "Response-only modal identification of structures using strong motion data", Earthq. Eng. Struct. Dyn., 42(8), 1221- 1242. https://doi.org/10.1002/eqe.2268
- Gomez, D., Dyke, S.J. and Maghareh, A. (2015), "Enabling role of hybrid simulation across NEES in advancing earthquake engineering", Smart Struct. Syst., Int. J., 15(3), 913-929. https://doi.org/10.12989/sss.2015.15.3.913
- Gueguen, P. and Bard, P.Y. (2005), "Soil-structure and soil-structure-soil interaction: Experimental evidence at the Volvi test site", J. Earthq. Eng., 9(5), 657-693. https://doi.org/10.1080/13632460509350561
- Guo, J., Tang, Z.Y., Chen, S.C. and Li, Z.B. (2016), "Control strategy for the substructuring testing systems to simulate soilstructure interaction", Smart Struct. Syst., Int. J., 18(6), 1169-1188. https://doi.org/10.12989/sss.2016.18.6.1169
- Harris, C.M. and Piersol, A.G. (2010), Harris' Shock and Vibration Handbook, McGraw-Hill, New York, NY, USA.
- Harvey, P.S. and Gavin, H.P. (2013), "The nonholonomic and chaotic nature of a rolling isolation system", J. Sound Vib., 332(14), 3535-3551. https://doi.org/10.1016/j.jsv.2013.01.036
- Jangid, R.S. (2005), "Optimum friction pendulum system for near-fault motions", Eng. Struct., 27(3), 349-359. https://doi.org/10.1016/j.engstruct.2004.09.013
- Kabeyasawa, T. (2008), "Nonlinear soil-structure interaction theory for low-rise reinforced concrete buildings based on the full-scale shake table test at E-Defense", Proceedings of the 14th World Conference on Earthquake Engineering, Beijing, China, October.
- Li, H., Maghareh, A., Montoya, H., Condori, J., Dyke, S. and Xu, Z. (2021), "Sliding mode control design for the benchmark problem in real-time hybrid simulation", Mech. Syst. Signal Proc., 151, 107364. https://doi.org/10.1016/j.ymssp.2020.107364
- Luco, J.E., Trifunac, M.D. and Wong, H.L. (1988), "Isolation of soil-structure interaction effects by full-scale forced vibration tests", Earthq. Eng. Struct. Dyn., 16(1), 1-21. https://doi.org/10.1002/eqe.4290160102
- Maghareh, A., Dyke, S.J., Prakash, A. and Rhoads, J.F. (2014), "Establishing a stability switch criterion for effective implementation of real-time hybrid simulation", Smart Struct. Syst., Int. J., 14(6), 1221-1245. http://dx.doi.org/10.12989/sss.2014.14.6.1221
- Maghareh, A., Dyke, S., Rabieniaharatbar, S. and Prakash, A. (2017), "Predictive stability indicator: a novel approach to configuring a real-time hybrid simulation", Earthq. Eng. Struct. Dyn., 46(1), 95-116. https://doi.org/10.1002/eqe.2775
- Maghareh, A., Dyke, S.J. and Silva, C.E. (2020), "A Self-tuning Robust Control System for nonlinear real-time hybrid simulation", Earthq. Eng. Struct. Dyn., 49(7), 695-715. https://doi.org/10.1002/eqe.3260
- Nakata, N. and Stehman, M. (2014), "Compensation techniques for experimental errors in real-time hybrid simulation using shake tables", Smart. Struct. Syst., Int. J., 14(6), 1055-1079. http://dx.doi.org/10.12989/sss.2014.14.6.1055
- Neethu, B. and Das, D. (2019), "Effect of dynamic soil--structure interaction on the seismic response of bridges with elastomeric bearings", Asian J. Civ. Eng., 20, 197-207. https://doi.org/10.1007/s42107-018-0098-0
- Ou, G., Dyke, S.J. and Prakash, A. (2017), "Real time hybrid simulation with online model updating: An analysis of accuracy", Mech. Syst. Signal Proc., 84, 223-240. https://doi.org/10.1016/j.ymssp.2016.06.015
- Pais, A. and Kausel, E. (1988), "Approximate formulas for dynamic stiffnesses of rigid foundations", Soil Dyn. Earthq. Eng., 7(4), 213-227. https://doi.org/10.1016/S0267-7261(88)80005-8
- Pioldi, F., Salvi, J. and Rizzi, E. (2017), "Refined FDD modal dynamic identification from earthquake responses with Soil-Structure Interaction", Int. J. Mech. Sci., 127, 47-61. https://doi.org/10.1016/j.ijmecsci.2016.10.032
- Slotine, J.E. and Li, W. (1991). Applied Nonlinear Control, Prentice Hall, Englewood Cliffs, NJ, USA.
- Spyrakos, C.C., Koutromanos, I.A. and Maniatakis, C.A. (2009), "Seismic response of base-isolated buildings including soil-structure interaction", Soil Dyn. Earthq. Eng., 29(4), 658-668. https://doi.org/10.1016/j.soildyn.2008.07.002
- Todorovska, M.I. (2002), "Full-scale experimental studies of soil-structure interaction", ISET J. Earthq. Technol., 39(3), 139-165. https://cpb-us-e1.wpmucdn.com/sites.usc.edu/dist/f/100/files/2018/03/7-1h10zxx.pdf#page=236
- Tsai, C.S., Hsueh, C.I. and Su, H.C. (2016), "Roles of soil-structure interaction and damping in base-isolated structures built on numerous soil layers overlying a half-space", Earthq. Eng. Eng. Vib., 15(2), 387-400. https://doi.org/10.1007/s11803-016-0331-3
- Wang, Q., Wang, J.T., Jin, F., Chi, F.D. and Zhang, C.H. (2011), "Real-time dynamic hybrid testing for soil-structure interaction analysis", Soil Dyn. Earthq. Eng., 31(12), 1690-1702. https://doi.org/10.1016/j.soildyn.2011.07.004
- Wang, Z., Wu, B., Bursi, O.S., Xu, G.S. and Ding, Y. (2014), "An effective online delay estimation method based on a simplified physical system model for real-time hybrid simulation", Smart Struct. Syst., Int. J., 14(6), 1247-1267. http://dx.doi.org/10.12989/sss.2014.14.6.1247
- Zhang, R.Y., Lauenstein, P.V. and Phillips, B.M. (2016), "Real-time hybrid simulation of a shear building with a uni-axial shake table", Eng. Struct., 119, 217-229. https://doi.org/10.1016/j.engstruct.2016.04.022
- Zhang, R.Y., Phillips, B.M., Taniguchi, S., Ikenaga, M. and Ikago, K. (2017), "Shake table real-time hybrid simulation techniques for the performance evaluation of buildings with inter-story isolation", Struct. Control. Health Monit., 24(10). https://doi.org/10.1002/stc.1971
- Zhou, M.X., Wang, J.T., Jin, F., Gui, Y. and Zhu, F. (2014), "Real-Time Dynamic Hybrid Testing Coupling Finite Element and Shaking Table", J. Earthqu. Eng., 18(4), 637-653. https://doi.org/10.1080/13632469.2014.897276
- Zhuang, H.Y., Fu, J.S., Yu, X., Chen, S. and Cai, X.H. (2019), "Earthquake responses of a base-isolated structure on a multi-layered soft soil foundation by using shaking table tests", Eng. Struct., 179, 79-91. https://doi.org/10.1016/j.engstruct.2018.10.060