DOI QR코드

DOI QR Code

농업가뭄대응을 위한 인공함양 시스템의 함양능력 평가

Recharge Potential Assessment of Artificial Recharge System for Agricultural Drought Adaptation

  • 이재영 ((주)신우엔지니어링 융합기술연구소) ;
  • 김규범 (대전대학교 건설안전방재공학과)
  • Lee, Jae Young (Fusion Research Institute, Sinwoo Engineering CO., LTD.) ;
  • Kim, Gyoo Bum (Department of Construction Safety and Disaster Prevention, Daejeon University)
  • 투고 : 2020.11.20
  • 심사 : 2021.03.18
  • 발행 : 2021.03.31

초록

최근 기후변화로 인한 가뭄발생으로 국지적인 물부족 문제 해결을 위해 안정적인 지하수를 활용한 물공급 방안의 필요성이 증가하고 있으며 이에 대한 대안으로 지하수 인공함양 기술이 대두되고 있다. 본 연구에서는 기상조건 및 목표취수량, 함양정의 주입량, 주입기간 등을 고려한 함양 시나리오를 반영하여 수치모델링을 통해 인공함양-취수 시스템의 함양능력 평가와 최적 운영조건을 도출하여 가뭄발생에 대비한 농업용수의 효율적인 공급과 안정적인 용수확보를 위한 정량적인 평가기법을 도출하고자 하였다. 이에 함양정의 함양능력을 평가하기 위해 물수지 분석으로부터 도출된 목표취수량을 고려한 총 주입량 10,000 ton의 조건하에서 주입 시나리오별(Case 1~4)로 주입정 및 관측정별 지하수위 변화를 모사한 결과 주입 후 유역 내 지하수위는 약 25~42일간 유지되는 것으로 나타났다. 이 중 Case 3의 경우 지표하 1 m 미만으로 지하수위가 상승하여 적정 주입량은 50 m3/day가 적절한 것으로 모사되었으며 함양수 주입에 의한 지하수위 상승에 따른 영향범위는 113.5 m로 예측되었다. 또한 함양 시나리오에 따른 하류부 저투수성 벽체(LPB) 설치 전후의 유역내 함양능력 변화는 설치 전 대비 지하수 저류량은 약 6배가량 증가하였고 지하수 체류시간은 약 4배 정도 증가하는 것으로 모사되었다. 본 연구결과는 향후 가뭄대응을 위한 안정적인 농업용수 공급 및 지속적인 수자원 확보에 크게 기여할 것으로 기대된다.

There is an increasing need for water supply plan using sustainable groundwater to resolve water shortage problem caused by drought due to climate change and artificial aquifer recharge has recently emerged as an alternative. This study deals with recharge potential assessment for artificial recharge system and quantitative assessment for securing stable water and efficient agricultural water supply adapt to drought finding optimal operating condition by numerical modeling to reflect recharge scenarios considering climate condition, target water intake, injection rate, and injection duration. In order to assess recharge potential of injection well, numerical simulation was performed to predict groundwater level changes in injection and observation well respect to injection scenarios (Case 1~4) for a given total injection rate (10,000 m3). The results indicate that groundwater levels for each case are maintained for 25~42 days and optimal injection rate is 50 m3/day for Case 3 resulted in groundwater level rise less than 1 m below surface. The results also show that influential area of groundwater level rise due to injection was estimated at 113.5 m and groundwater storage and elapsed time were respectively increased by 6 times and 4 times after installation of low permeable barrier. The proposed assessment method can be contributed to sustainable agricultural water supply and stable water security for drought adaptation.

키워드

과제정보

본 연구는 환경부(한국환경산업기술원)의 수요대응형 물공급 서비스사업 과제(상시 가뭄지역의 지하수 최적공급 관리를 위한 IoT 기반 인공함양 및 Well network 기술 개발, #146523)의 지원으로 수행되었습니다.

참고문헌

  1. Choi, J. C. and Kang, D. H. (2019). Sensitivity Analysis of Artificial Recharge in Consideration of Hydrologic Characteristics of Facility Agricultrul Complex in Korea : Hydraulic Conductivity and Separation Distance from Injection Well to Pumping Well. Journal of Environmental Science International. 28(9): 737-749. https://doi.org/10.5322/jesi.2019.28.9.737
  2. Chungcheongnam-do (2013). 2013 Groundwater Management Plan Report. Hongseong: Chungcheongnam-do.
  3. Dong, Y., Zhao, P., Zhou, W. (2011). Effect of Artificial Recharge on Hydraulic Conductivity Using Single Injection Well. ISWREP 2011 : Proceedings of 2011 International Symposium on Water Resource and Environmental Protection. 3: 2115-2117.
  4. Hashemi, H., Berndtsson, R., and Persson, M. (2015). Artificial Recharge by Floodwater Spreading Estimated by Water Balances and Groundwater Modelling in Arid Iran. Hydrological Sciences Journal. 60(2): 336-350. https://doi.org/10.1080/02626667.2014.881485
  5. Karim, I. R. and Ali, M. A. (2017). Artificial Recharge of Groundwaer by Injection Wells (Case Study). International Journal of Scientific Engineering and Technology Research. 6(31): 6193-6196.
  6. Lee, H., Koo, M. H., and Kim, Y. (2014). Determining Optimal Location of an Artificial Recharge Well using an Optimization-coupled Groundwater Flow Model. Journal of Soil and Groundwater Environment. 19(3): 66-81. https://doi.org/10.7857/JSGE.2014.19.3.066
  7. Lee, Y. D., Shin, D. M., Kim, B. J., and Kim, G. B. (2019). Selecting Aquifer Artificial Recharge Methods Based on Characteristics of the Target Aquifer. The Journal of Engineering Geology. 29(4): 483-494.
  8. McDonald, M. G. and Harbaugh, A. W. (1988). A Modular Three-Dimensional Finite-Difference Ground-Water Flow Model. U.S. Geological Survey. Open-File Report 83-875. Book 6. Chapter A1. U.S. Geological Survey.
  9. Mohamed, H. I. and Ahmed, S. S. (2013). Assessmnet of Hydraulic Performance of Groundwater Recharge Techniques. International Journal of Water Resources and Arid Environments. 2(3): 120-124.
  10. Moon, S. H., Ha, K., Kim, Y., Koh, D. C., and Yoon, H. (2014). Examination for Efficiency of Groundwater Artificial Recharge in Alluvial Aquifer Near Nakdong River of Changweon Area, Korea. Economic and Environmental Geology. 47(6): 611-623. https://doi.org/10.9719/EEG.2014.47.6.611
  11. National Research Council (1994). Groundwater Recharge Using Waters of Impaired Quality. Washington DC: National Academy Press.
  12. Park, G., Lee, H., Koo, M. H., and Kim, Y. (2016). Strategies for an Effective Artificial Recharge in Alluvial StreamAquifer Systems Undergoing Heavy Seasonal Pumping. Journal of the Geological Society of Korea. 52(3): 211-219. https://doi.org/10.14770/jgsk.2016.52.3.211