DOI QR코드

DOI QR Code

The role of microRNAs in cell death pathways

  • Jang, Ji Hoon (Department of Anatomy, Yeungnam University College of Medicine) ;
  • Lee, Tae-Jin (Department of Anatomy, Yeungnam University College of Medicine)
  • 투고 : 2020.11.16
  • 심사 : 2020.12.12
  • 발행 : 2021.04.30

초록

MicroRNAs (miRNAs) are a class of noncoding RNAs that negatively regulate target messenger RNAs. In multicellular eukaryotes, numerous miRNAs perform basic cellular functions, including cell proliferation, differentiation, and death. Abnormal expression of miRNAs weakens or modifies various apoptosis pathways, leading to the development of human cancer. Cell death occurs in an active manner that maintains tissue homeostasis and eliminates potentially harmful cells through regulated cell death processes, including apoptosis, autophagic cell death, and necroptosis. In this review, we discuss the involvement of miRNAs in regulating cell death pathways in cancers and the potential therapeutic functions of miRNAs in cancer treatment.

키워드

과제정보

This study was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2020R1F1A1048259).

참고문헌

  1. Mohr AM, Mott JL. Overview of microRNA biology. Semin Liver Dis 2015;35:3-11. https://doi.org/10.1055/s-0034-1397344
  2. Liu B, Li J, Cairns MJ. Identifying miRNAs, targets and functions. Brief Bioinform 2014;15:1-19. https://doi.org/10.1093/bib/bbs075
  3. Acunzo M, Romano G, Wernicke D, Croce CM. MicroRNA and cancer: a brief overview. Adv Biol Regul 2015;57:1-9. https://doi.org/10.1016/j.jbior.2014.09.013
  4. van den Berg A, Mols J, Han J. RISC-target interaction: cleavage and translational suppression. Biochim Biophys Acta 2008;1779:668-77. https://doi.org/10.1016/j.bbagrm.2008.07.005
  5. Rajewsky N. MicroRNA target predictions in animals. Nat Genet 2006;38(Suppl):S8-13. https://doi.org/10.1038/ng1798
  6. Maziere P, Enright AJ. Prediction of microRNA targets. Drug Discov Today 2007;12:452-8. https://doi.org/10.1016/j.drudis.2007.04.002
  7. Huntzinger E, Izaurralde E. Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet 2011;12:99-110. https://doi.org/10.1038/nrg2936
  8. Jo MH, Shin S, Jung SR, Kim E, Song JJ, Hohng S. Human Argonaute 2 has diverse reaction pathways on target RNAs. Mol Cell 2015;59:117-24. https://doi.org/10.1016/j.molcel.2015.04.027
  9. Grammatikakis I, Gorospe M, Abdelmohsen K. Modulation of cancer traits by tumor suppressor microRNAs. Int J Mol Sci 2013;14:1822-42. https://doi.org/10.3390/ijms14011822
  10. Su Z, Yang Z, Xu Y, Chen Y, Yu Q. MicroRNAs in apoptosis, autophagy and necroptosis. Oncotarget 2015;6:8474-90. https://doi.org/10.18632/oncotarget.3523
  11. Di Leva G, Garofalo M, Croce CM. MicroRNAs in cancer. Annu Rev Pathol 2014;9:287-314. https://doi.org/10.1146/annurev-pathol-012513-104715
  12. Ali Syeda Z, Langden SS, Munkhzul C, Lee M, Song SJ. Regulatory mechanism of microRNA expression in cancer. Int J Mol Sci 2020;21:1723. https://doi.org/10.3390/ijms21051723
  13. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, et al. MicroRNA expression profiles classify human cancers. Nature 2005;435:834-8. https://doi.org/10.1038/nature03702
  14. Lambertz I, Nittner D, Mestdagh P, Denecker G, Vandesompele J, Dyer MA, et al. Monoallelic but not biallelic loss of Dicer1 promotes tumorigenesis in vivo. Cell Death Differ 2010;17:633-41. https://doi.org/10.1038/cdd.2009.202
  15. Kumar MS, Pester RE, Chen CY, Lane K, Chin C, Lu J, et al. Dicer1 functions as a haploinsufficient tumor suppressor. Genes Dev 2009;23:2700-4. https://doi.org/10.1101/gad.1848209
  16. Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol 2007;35:495-516. https://doi.org/10.1080/01926230701320337
  17. Melet A, Song K, Bucur O, Jagani Z, Grassian AR, Khosravi-Far R. Apoptotic pathways in tumor progression and therapy. Adv Exp Med Biol 2008;615:47-79. https://doi.org/10.1007/978-1-4020-6554-5_4
  18. Fulda S, Debatin KM. Targeting inhibitor of apoptosis proteins (IAPs) for diagnosis and treatment of human diseases. Recent Pat Anticancer Drug Discov 2006;1:81-9. https://doi.org/10.2174/157489206775246539
  19. Green DR, Llambi F. Cell death signaling. Cold Spring Harb Perspect Biol 2015;7:a006080. https://doi.org/10.1101/cshperspect.a006080
  20. Lavrik I, Golks A, Krammer PH. Death receptor signaling. J Cell Sci 2005;118(Pt 2):265-7. https://doi.org/10.1242/jcs.01610
  21. Debatin KM, Krammer PH. Death receptors in chemotherapy and cancer. Oncogene 2004;23:2950-66. https://doi.org/10.1038/sj.onc.1207558
  22. Gerspach J, Pfizenmaier K, Wajant H. Therapeutic targeting of CD95 and the TRAIL death receptors. Recent Pat Anticancer Drug Discov 2011;6:294-310. https://doi.org/10.2174/157489211796957739
  23. Garrido C, Galluzzi L, Brunet M, Puig PE, Didelot C, Kroemer G. Mechanisms of cytochrome c release from mitochondria. Cell Death Differ 2006;13:1423-33. https://doi.org/10.1038/sj.cdd.4401950
  24. Fulda S, Debatin KM. Targeting apoptosis pathways in cancer therapy. Curr Cancer Drug Targets 2004;4:569-76. https://doi.org/10.2174/1568009043332763
  25. Lamkanfi M, Declercq W, Kalai M, Saelens X, Vandenabeele P. Alice in caspase land. A phylogenetic analysis of caspases from worm to man. Cell Death Differ 2002;9:358-61. https://doi.org/10.1038/sj.cdd.4400989
  26. Walters J, Pop C, Scott FL, Drag M, Swartz P, Mattos C, et al. A constitutively active and uninhibitable caspase-3 zymogen efficiently induces apoptosis. Biochem J 2009;424:335-45. https://doi.org/10.1042/BJ20090825
  27. Deveraux QL, Takahashi R, Salvesen GS, Reed JC. X-linked IAP is a direct inhibitor of cell-death proteases. Nature 1997;388:300-4. https://doi.org/10.1038/40901
  28. Bae J, Donigian JR, Hsueh AJ. Tankyrase 1 interacts with Mcl-1 proteins and inhibits their regulation of apoptosis. J Biol Chem 2003;278:5195-204. https://doi.org/10.1074/jbc.M201988200
  29. Natoni F, Diolordi L, Santoni C, Gilardini Montani MS. Sodium butyrate sensitises human pancreatic cancer cells to both the intrinsic and the extrinsic apoptotic pathways. Biochim Biophys Acta 2005;1745:318-29. https://doi.org/10.1016/j.bbamcr.2005.07.003
  30. Zhang X, Zhang X, Hu S, Zheng M, Zhang J, Zhao J, et al. Identification of miRNA-7 by genome-wide analysis as a critical sensitizer for TRAIL-induced apoptosis in glioblastoma cells. Nucleic Acids Res 2017;45:5930-44. https://doi.org/10.1093/nar/gkx317
  31. Favreau AJ, Shaffiey F, Cross E, Sathyanarayana P. Mir-590 is a novel STAT5 regulated oncogenic miRNA and targets FasL in acute myeloid leukemia. Blood 2013;122:3811. https://doi.org/10.1182/blood.V122.21.3811.3811
  32. Wang P, Zhuang L, Zhang J, Fan J, Luo J, Chen H, et al. The serum miR-21 level serves as a predictor for the chemosensitivity of advanced pancreatic cancer, and miR-21 expression confers chemoresistance by targeting FasL. Mol Oncol 2013;7:334-45. https://doi.org/10.1016/j.molonc.2012.10.011
  33. Huang G, Nishimoto K, Zhou Z, Hughes D, Kleinerman ES. miR-20a encoded by the miR-17-92 cluster increases the metastatic potential of osteosarcoma cells by regulating Fas expression. Cancer Res 2012;72:908-16. https://doi.org/10.1158/0008-5472.CAN-11-1460
  34. Curtale G, Citarella F, Carissimi C, Goldoni M, Carucci N, Fulci V, et al. An emerging player in the adaptive immune response: microRNA-146a is a modulator of IL-2 expression and activation-induced cell death in T lymphocytes. Blood 2010;115:265-73. https://doi.org/10.1182/blood-2009-06-225987
  35. Huang X, Xiao S, Zhu X, Yu Y, Cao M, Zhang X, et al. miR196b-5p-mediated downregulation of FAS promotes NSCLC progression by activating IL6-STAT3 signaling. Cell Death Dis 2020;11:785. https://doi.org/10.1038/s41419-020-02997-7
  36. Razumilava N, Bronk SF, Smoot RL, Fingas CD, Werneburg NW, Roberts LR, et al. miR-25 targets TNF-related apoptosis inducing ligand (TRAIL) death receptor-4 and promotes apoptosis resistance in cholangiocarcinoma. Hepatology 2012;55:465-75. https://doi.org/10.1002/hep.24698
  37. Yamada N, Noguchi S, Kumazaki M, Shinohara H, Miki K, Naoe T, et al. Epigenetic regulation of microRNA-128a expression contributes to the apoptosis-resistance of human T-cell leukaemia jurkat cells by modulating expression of fas-associated protein with death domain (FADD). Biochim Biophys Acta 2014;1843:590-602. https://doi.org/10.1016/j.bbamcr.2013.11.022
  38. Zhang J, Du Y, Wu C, Ren X, Ti X, Shi J, et al. Curcumin promotes apoptosis in human lung adenocarcinoma cells through miR-186* signaling pathway. Oncol Rep 2010;24:1217-23.
  39. Fulda S. Targeting c-FLICE-like inhibitory protein (CFLAR) in cancer. Expert Opin Ther Targets 2013;17:195-201. https://doi.org/10.1517/14728222.2013.736499
  40. Kim EA, Kim SW, Nam J, Sung EG, Song IH, Kim JY, et al. Inhibition of c-FLIPL expression by miRNA-708 increases the sensitivity of renal cancer cells to anti-cancer drugs. Oncotarget 2016;7:31832-46. https://doi.org/10.18632/oncotarget.7149
  41. Czochor JR, Glazer PM. MicroRNAs in cancer cell response to ionizing radiation. Antioxid Redox Signal 2014;21:293-312. https://doi.org/10.1089/ars.2013.5718
  42. Yin W, Chen J, Wang G, Zhang D. MicroRNA-106b functions as an oncogene and regulates tumor viability and metastasis by targeting LARP4B in prostate cancer. Mol Med Rep 2019;20:951-8.
  43. Park JK, Doseff AI, Schmittgen TD. MicroRNAs targeting caspase-3 and -7 in PANC-1 cells. Int J Mol Sci 2018;19:1206. https://doi.org/10.3390/ijms19041206
  44. Wang Y, Zhang S, Bao H, Mu S, Zhang B, Ma H, et al. MicroRNA-365 promotes lung carcinogenesis by downregulating the USP33/SLIT2/ROBO1 signalling pathway. Cancer Cell Int 2018;18:64. https://doi.org/10.1186/s12935-018-0563-6
  45. Zhang X, Yao J, Guo K, Huang H, Huai S, Ye R, et al. The functional mechanism of miR-125b in gastric cancer and its effect on the chemosensitivity of cisplatin. Oncotarget 2017;9:2105-19. https://doi.org/10.18632/oncotarget.23249
  46. Li Q, Ren P, Shi P, Chen Y, Xiang F, Zhang L, et al. MicroRNA-148a promotes apoptosis and suppresses growth of breast cancer cells by targeting B-cell lymphoma 2. Anticancer Drugs 2017;28:588-95. https://doi.org/10.1097/CAD.0000000000000498
  47. Lin YC, Lin JF, Tsai TF, Chou KY, Chen HE, Hwang TI. Tumor suppressor miRNA-204-5p promotes apoptosis by targeting BCL2 in prostate cancer cells. Asian J Surg 2017;40:396-406. https://doi.org/10.1016/j.asjsur.2016.07.001
  48. Zhang Y, Schiff D, Park D, Abounader R. MicroRNA-608 and microRNA-34a regulate chordoma malignancy by targeting EGFR, Bcl-xL and MET. PLoS One 2014;9:e91546. https://doi.org/10.1371/journal.pone.0091546
  49. Chen Q, Xu J, Li L, Li H, Mao S, Zhang F, et al. MicroRNA-23a/b and microRNA-27a/b suppress Apaf-1 protein and alleviate hypoxia-induced neuronal apoptosis. Cell Death Dis 2014;5:e1132. https://doi.org/10.1038/cddis.2014.92
  50. English AR, Voeltz GK. Endoplasmic reticulum structure and interconnections with other organelles. Cold Spring Harb Perspect Biol 2013;5:a013227. https://doi.org/10.1101/cshperspect.a013227
  51. Corazzari M, Gagliardi M, Fimia GM, Piacentini M. Endoplasmic reticulum stress, unfolded protein response, and cancer cell fate. Front Oncol 2017;7:78. https://doi.org/10.3389/fonc.2017.00078
  52. Szegezdi E, Logue SE, Gorman AM, Samali A. Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Rep 2006;7:880-5. https://doi.org/10.1038/sj.embor.7400779
  53. Oakes SA, Papa FR. The role of endoplasmic reticulum stress in human pathology. Annu Rev Pathol 2015;10:173-94. https://doi.org/10.1146/annurev-pathol-012513-104649
  54. Yu B, Wen L, Xiao B, Han F, Shi Y. Single prolonged stress induces ATF6 alpha-dependent endoplasmic reticulum stress and the apoptotic process in medial frontal cortex neurons. BMC Neurosci 2014;15:115. https://doi.org/10.1186/s12868-014-0115-5
  55. Zhou Y, Jia WK, Jian Z, Zhao L, Liu CC, Wang Y, et al. Downregulation of microRNA-199a-5p protects cardiomyocytes in cyanotic congenital heart disease by attenuating endoplasmic reticulum stress. Mol Med Rep 2017;16:2992-3000. https://doi.org/10.3892/mmr.2017.6934
  56. Xu G, Chen J, Jing G, Grayson TB, Shalev A. miR-204 targets PERK and regulates UPR signaling and β-cell apoptosis. Mol Endocrinol 2016;30:917-24. https://doi.org/10.1210/me.2016-1056
  57. Hiramatsu N, Chiang K, Aivati C, Rodvold JJ, Lee JM, Han J, et al. PERK-mediated induction of microRNA-483 disrupts cellular ATP homeostasis during the unfolded protein response. J Biol Chem 2020;295:237-49. https://doi.org/10.1074/jbc.RA119.008336
  58. Kong F, Zou H, Liu X, He J, Zheng Y, Xiong L, et al. miR-7112-3p targets PERK to regulate the endoplasmic reticulum stress pathway and apoptosis induced by photodynamic therapy in colorectal cancer CX-1 cells. Photodiagnosis Photodyn Ther 2020;29:101663. https://doi.org/10.1016/j.pdpdt.2020.101663
  59. Byrd AE, Brewer JW. Micro(RNA)managing endoplasmic reticulum stress. IUBMB Life 2013;65:373-81. https://doi.org/10.1002/iub.1151
  60. Zhang WG, Chen L, Dong Q, He J, Zhao HD, Li FL, et al. Mmu-miR-702 functions as an anti-apoptotic mirtron by mediating ATF6 inhibition in mice. Gene 2013;531:235-42. https://doi.org/10.1016/j.gene.2013.09.005
  61. Upton JP, Wang L, Han D, Wang ES, Huskey NE, Lim L, et al. IRE1° cleaves select microRNAs during ER stress to derepress translation of proapoptotic caspase-2. Science 2012;338:818-22. https://doi.org/10.1126/science.1226191
  62. Upton JP, Austgen K, Nishino M, Coakley KM, Hagen A, Han D, et al. Caspase-2 cleavage of BID is a critical apoptotic signal downstream of endoplasmic reticulum stress. Mol Cell Biol 2008;28:3943-51. https://doi.org/10.1128/MCB.00013-08
  63. Byrd AE, Aragon IV, Brewer JW. MicroRNA-30c-2* limits expression of proadaptive factor XBP1 in the unfolded protein response. J Cell Biol 2012;196:689-98. https://doi.org/10.1083/jcb.201201077
  64. Behrman S, Acosta-Alvear D, Walter P. A CHOP-regulated microRNA controls rhodopsin expression. J Cell Biol 2011;192:919-27. https://doi.org/10.1083/jcb.201010055
  65. Chitnis NS, Pytel D, Bobrovnikova-Marjon E, Pant D, Zheng H, Maas NL, et al. miR-211 is a prosurvival microRNA that regulates chop expression in a PERK-dependent manner. Mol Cell 2012;48:353-64. https://doi.org/10.1016/j.molcel.2012.08.025
  66. Grootjans S, Vanden Berghe T, Vandenabeele P. Initiation and execution mechanisms of necroptosis: an overview. Cell Death Differ 2017;24:1184-95. https://doi.org/10.1038/cdd.2017.65
  67. Liu Y, Liu T, Lei T, Zhang D, Du S, Girani L, et al. RIP1/RIP3-regulated necroptosis as a target for multifaceted disease therapy (Review). Int J Mol Med 2019;44:771-86.
  68. MacEwan DJ. TNF ligands and receptors: a matter of life and death. Br J Pharmacol 2002;135:855-75. https://doi.org/10.1038/sj.bjp.0704549
  69. Baritaud M, Cabon L, Delavallee L, Galan-Malo P, Gilles ME, Brunelle-Navas MN, et al. AIF-mediated caspase-independent necroptosis requires ATM and DNA- PK-induced histone H2AX Ser139 phosphorylation. Cell Death Dis 2012;3:e390. https://doi.org/10.1038/cddis.2012.120
  70. Dhuriya YK, Sharma D. Necroptosis: a regulated inflammatory mode of cell death. J Neuroinflammation 2018;15:199. https://doi.org/10.1186/s12974-018-1235-0
  71. Andalib A, Rashed S, Dehbashi M, Hajati J, Noorbakhsh F, Ganjalikhani-Hakemi M. The upregulation of hsa-mir-181b-1 and downregulation of its target CYLD in the late-stage of tumor progression of breast cancer. Indian J Clin Biochem 2020;35:312-21. https://doi.org/10.1007/s12291-019-00826-z
  72. Ye H, Liu X, Lv M, Wu Y, Kuang S, Gong J, et al. MicroRNA and transcription factor co-regulatory network analysis reveals miR19 inhibits CYLD in T-cell acute lymphoblastic leukemia. Nucleic Acids Res 2012;40:5201-14. https://doi.org/10.1093/nar/gks175
  73. Wang K, Liu F, Zhou LY, Ding SL, Long B, Liu CY, et al. miR874 regulates myocardial necrosis by targeting caspase-8. Cell Death Dis 2013;4:e709. https://doi.org/10.1038/cddis.2013.233
  74. Chen F, Zhu HH, Zhou LF, Wu SS, Wang J, Chen Z. Inhibition of c-FLIP expression by miR-512-3p contributes to taxol-induced apoptosis in hepatocellular carcinoma cells. Oncol Rep 2010;23:1457-62.
  75. Wang HQ, Yu XD, Liu ZH, Cheng X, Samartzis D, Jia LT, et al. Deregulated miR-155 promotes Fas-mediated apoptosis in human intervertebral disc degeneration by targeting FADD and caspase-3. J Pathol 2011;225:232-42. https://doi.org/10.1002/path.2931
  76. Ma X, Conklin DJ, Li F, Dai Z, Hua X, Li Y, et al. The oncogenic microRNA miR-21 promotes regulated necrosis in mice. Nat Commun 2015;6:7151. https://doi.org/10.1038/ncomms8151
  77. Zeng R, Huang J, Sun Y, Luo J. Cell proliferation is induced in renal cell carcinoma through miR-92a-3p upregulation by targeting FBXW7. Oncol Lett 2020;19:3258-68.
  78. Saha S, Panigrahi DP, Patil S, Bhutia SK. Autophagy in health and disease: a comprehensive review. Biomed Pharmacother 2018;104:485-95. https://doi.org/10.1016/j.biopha.2018.05.007
  79. Yang Z, Klionsky DJ. An overview of the molecular mechanism of autophagy. Curr Top Microbiol Immunol 2009;335:1-32. https://doi.org/10.1007/978-3-642-00302-8_1
  80. Colell A, Ricci JE, Tait S, Milasta S, Maurer U, Bouchier-Hayes L, et al. GAPDH and autophagy preserve survival after apoptotic cytochrome c release in the absence of caspase activation. Cell 2007;129:983-97. https://doi.org/10.1016/j.cell.2007.03.045
  81. Degenhardt K, Mathew R, Beaudoin B, Bray K, Anderson D, Chen G, et al. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell 2006;10:51-64. https://doi.org/10.1016/j.ccr.2006.06.001
  82. Iwamaru A, Kondo Y, Iwado E, Aoki H, Fujiwara K, Yokoyama T, et al. Silencing mammalian target of rapamycin signaling by small interfering RNA enhances rapamycin-induced autophagy in malignant glioma cells. Oncogene 2007;26:1840-51. https://doi.org/10.1038/sj.onc.1209992
  83. Saxton RA, Sabatini DM. mTOR signaling in growth, metabolism, and disease. Cell 2017;168:960-76. https://doi.org/10.1016/j.cell.2017.02.004
  84. Rabanal-Ruiz Y, Otten EG, Korolchuk VI. mTORC1 as the main gateway to autophagy. Essays Biochem 2017;61:565-84. https://doi.org/10.1042/EBC20170027
  85. Yin H, Ma J, Chen L, Piao S, Zhang Y, Zhang S, et al. miR-99a enhances the radiation sensitivity of non-small cell lung cancer by targeting mTOR. Cell Physiol Biochem 2018;46:471-81. https://doi.org/10.1159/000488615
  86. Yu T, Li J, Yan M, Liu L, Lin H, Zhao F, et al. MicroRNA-193a3p and -5p suppress the metastasis of human non-small-cell lung cancer by downregulating the ERBB4/PIK3R3/mTOR/S6K2 signaling pathway. Oncogene 2015;34:413-23. https://doi.org/10.1038/onc.2013.574
  87. Callegari E, D'Abundo L, Guerriero P, Simioni C, Elamin BK, Russo M, et al. miR-199a-3p modulates MTOR and PAK4 pathways and inhibits tumor growth in a hepatocellular carcinoma transgenic mouse model. Mol Ther Nucleic Acids 2018;11:485-93. https://doi.org/10.1016/j.omtn.2018.04.002
  88. Ge H, Li B, Hu WX, Li RJ, Jin H, Gao MM, et al. MicroRNA-148b is down-regulated in non-small cell lung cancer and associated with poor survival. Int J Clin Exp Pathol 2015;8:800-5.
  89. Zhao G, Zhang JG, Liu Y, Qin Q, Wang B, Tian K, et al. miR148b functions as a tumor suppressor in pancreatic cancer by targeting AMPKα1. Mol Cancer Ther 2013;12:83-93. https://doi.org/10.1158/1535-7163.MCT-12-0534-T
  90. Li H, Wang Y, Song Y. MicroRNA-26b inhibits the immune response to Mycobacterium tuberculosis (M.tb) infection in THP-1 cells via targeting TGFβ-activated kinase-1 (TAK1), a promoter of the NF-κB pathway. Int J Clin Exp Pathol 2018; 11:1218-27.
  91. Korkmaz G, le Sage C, Tekirdag KA, Agami R, Gozuacik D. miR-376b controls starvation and mTOR inhibition-related autophagy by targeting ATG4C and BECN1. Autophagy 2012;8:165-76. https://doi.org/10.4161/auto.8.2.18351
  92. Fu Z, Luo W, Wang J, Peng T, Sun G, Shi J, et al. Malat1 activates autophagy and promotes cell proliferation by sponging miR-101 and upregulating STMN1, RAB5A and ATG4D expression in glioma. Biochem Biophys Res Commun 2017;492:480-6. https://doi.org/10.1016/j.bbrc.2017.08.070
  93. Mikhaylova O, Stratton Y, Hall D, Kellner E, Ehmer B, Drew AF, et al. VHL-regulated MiR-204 suppresses tumor growth through inhibition of LC3B-mediated autophagy in renal clear cell carcinoma. Cancer Cell 2012;21:532-46. https://doi.org/10.1016/j.ccr.2012.02.019
  94. Zhang S, Gao L, Thakur A, Shi P, Liu F, Feng J, et al. miRNA-204 suppresses human non-small cell lung cancer by targeting ATF2. Tumour Biol 2016;37:11177-86. https://doi.org/10.1007/s13277-016-4906-4
  95. An Y, Zhang Z, Shang Y, Jiang X, Dong J, Yu P, et al. miR-23b3p regulates the chemoresistance of gastric cancer cells by targeting ATG12 and HMGB2. Cell Death Dis 2015;6:e1766. https://doi.org/10.1038/cddis.2015.123
  96. Gozuacik D, Akkoc Y, Ozturk DG, Kocak M. Autophagy-regulating microRNAs and cancer. Front Oncol 2017;7:65.
  97. Sun T, Li MY, Li PF, Cao JM. MicroRNAs in cardiac autophagy: small molecules and big role. Cells 2018;7:104. https://doi.org/10.3390/cells7080104
  98. Zhao Y, Wang Z, Zhang W, Zhang L. MicroRNAs play an essential role in autophagy regulation in various disease phenotypes. Biofactors 2019;45:844-56. https://doi.org/10.1002/biof.1555
  99. Menghini R, Casagrande V, Marino A, Marchetti V, Cardellini M, Stoehr R, et al. miR-216a: a link between endothelial dysfunction and autophagy. Cell Death Dis 2014;5:e1029. https://doi.org/10.1038/cddis.2013.556
  100. Chen HY, Lin YM, Chung HC, Lang YD, Lin CJ, Huang J, et al. miR-103/107 promote metastasis of colorectal cancer by targeting the metastasis suppressors DAPK and KLF4. Cancer Res 2012;72:3631-41. https://doi.org/10.1158/0008-5472.CAN-12-0667

피인용 문헌

  1. Immune Modulation as a Key Mechanism for the Protective Effects of Remote Ischemic Conditioning After Stroke vol.12, 2021, https://doi.org/10.3389/fneur.2021.746486