DOI QR코드

DOI QR Code

The Complete Mitochondrial Genome and Molecular Phylogeny of the Flathead Platycephalus cultellatus Richardson, 1846 from Vietnam (Teleostei; Scorpaeniformes)

베트남 Platycephalus cultellatus Richardson, 1846 (Teleostei; Scorpaeniformes)의 전장 미토콘드리아 유전체와 분자계통

  • ;
  • ;
  • 최윤희 (부경대학교 수산생물학과) ;
  • 김근용 (아쿠아진텍 주식회사) ;
  • 허정수 (아쿠아진텍 주식회사) ;
  • 김근식 (국립생태원 멸종위기종복원센터) ;
  • 유정화 (유정화해양연구소) ;
  • 김경미 (국립해양생물자원관) ;
  • 윤문근 (국립해양생물자원관)
  • Received : 2021.09.16
  • Accepted : 2021.12.20
  • Published : 2021.12.31

Abstract

The family Platycephalidae is a taxonomic group of economically important demersal flathead fishes that predominantly occupy tropical or temperate estuaries and coastal environments of the Indo-Pacific oceans and the Mediterranean Sea. In this study, we for the first time analyzed the complete mitochondrial genome (mitogenome) of the flathead Platycephalus cultellatus Richardson, 1846 from Vietnam by Next Generation Sequencing method. Its mitogenome was 16,641 bp in total length, comprising 13 protein-coding genes (PCGs), two ribosomal RNA genes, and 22 transfer RNA genes. The gene composition and order of the mitogenome were identical to those of typical vertebrates. The phylogenetic trees were reconstructed based on the concatenated nucleotide sequence matrix of 13 PCGs and the partial sequence of a DNA barcoding marker, cox1 in order to determine its molecular phylogenetic position among the order Scorpaeniformes. The phylogenetic result revealed that P. cultellatus formed a monophyletic group with species belonging to the same family and consistently clustered with one nominal species, P. indicus, and two Platycephalus sp. specimens. Besides, the cox1 tree confirmed the taxonomic validity of our specimen by forming a monophyletic clade with its conspecific specimens. The mitogenome of P. cultellatus analyzed in this study will contribute valuable information for further study on taxonomy and phylogeny of flatheads.

양태과는 경제적으로 중요한 저서성 바닷물고기로써 인도태평양과 지중해의 열대 또는 온대지역의 하구역에 서식한다. 이번 연구에서 우리는 차세대염기서열분석법을 이용하여 flathead의 일종인 Platycephalus cultellatus Richardson, 1846의 전장 미토콘드리아 유전체를 최초로 분석하였다. 그 총 길이는 16,641 bp이었고, 단백질암호화 유전자 13개, 리보솜 RNA 유전자 2개, 전량 RNA 유전자 22개로 구성되었다. 그 유전자의 구성과 배열은 전형적인 척추동물과 같았다. 단백질암호화 유전자 13개를 바탕으로 작성된 분자계통수에서 P. cultellatus는 같은 과에 속하는 종들과 단계통군을 형성하였고, P. indicus를 비롯하여 Platycephalus sp.로 등록된 표본들과 함께 분기하였다. 또한 DNA 바코딩 분자마커로 널리 사용되는 cox1 유전자를 바탕으로 작성된 분자계통수에서 우리의 표본은 같은 종에 속하는 표본들과 단계통군을 형성하여 그 분류학적 위치가 명확하게 밝혀졌다. 이번 연구에서 새롭게 분석된 P. cultellatus의 미토콘드리아 유전체는 이후 flatheads의 분류와 분자계통을 위한 중요한 기초정보로 활용될 것이다.

Keywords

Acknowledgement

This work was supported by a grant from a research program of the National Marine Biodiversity Institute of Korea under Grant Number [2021M00100].

References

  1. Alexandros, S. 2006. RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics, 22: 2688-2690. https://doi.org/10.1093/bioinformatics/btl446.
  2. Asahida, T., T. Kobayashi, K. Saitoh and I. Nakayama. 1996. Tissue preservation and total DNA extraction from fish stored at ambient temperature using buffers containing high concentration of urea. Fish. Sci., 62: 727-730. https://doi.org/10.2331/fishsci.62.727.
  3. Boore, J.L. 1999. Animal mitochondrial genomes. Nucleic Acids Res., 27: 1767-1780. https://doi.org/10.1093/nar/27.8.1767.
  4. Bray, D.J. 2020. Platycephalus in Fishes of Australia. Available at: https://fishesofaustralia.net.au/home/family/48#moreinfo (accessed 18 June 2021).
  5. Briscoe, A.G., K.P. Hopkins and A. Waeschenbach. 2016. High-throughput sequencing of complete mitochondrial genomes. In: Bourlat, S.J. (ed.), Marine Genomics Methods and Protocols: Methods in Molecular Biology. Humana Press, New York, U.S.A., pp. 45-64. https://doi.org/10.1007/978-1-4939-3774-5_3.
  6. Chen, Z., N. Song, J. Zou and T. Gao. 2018. Rediscovery and elaborate description of Platycephalus cultellatus Richardson, 1846 collected from the coastal waters of South China Sea. Aquat. Living Resour., 31: 32. https://doi.org/10.1051/alr/2018015.
  7. Chen, Z., N. Song, J. Zou, Y. Qin, L. Ma and T. Gao. 2020. Identification of species in genus Platycephalus from seas of China. J. Ocean Univ. China, 19: 417-427. https://doi.org/10.1007/s11802-020-4158-1.
  8. Cheng, J., Z. Wang, N. Song, T. Yanagimoto and T. Gao. 2019. Phylogeographic analysis of the genus Platycephalus along the coastline of the northwestern Pacific inferred by mitochondrial DNA. BMC Evol. Biol., 19: 159. https://doi.org/10.1186/s12862-019-1477-1.
  9. Cui, L., Y.L. Dong, F.H. Liu, X.C. Gao, H. Zhang, L. Li, J.Y. Cen and S.H. Lu. 2017. The first two complete mitochondrial genomes for the family Triglidae and implications for the higher phylogeny of Scorpaeniformes. Sci. Rep., 7: 1553. https://doi.org/10.1038/s41598-017-01654-y.
  10. Cui, L., R.B. Cao, Y.L. Dong, X.C. Gao, J.G. Cen and S.H. Lu. 2019. The first complete mitochondrial genome of the flathead Cociella crocodilus (Scorpaeniformes: Platycephalidae) and the phylogenetic relationships within Scorpaeniformes based on whole mitogenomes. Genes, 10: 533. https://doi.org/10.3390/genes10070533.
  11. Darriba, D., G.L. Taboada, R. Doallo and D. Posada. 2012. jModel Test2: more model, new heuristics and parallel computing. Nat. Methods, 9: 722. https://doi.org/10.1038/nmeth.2109.
  12. Duchene, S., F.I. Archer, J. Vilstrup, S. Caballero and P.A. Morin. 2011. Mitogenome phylogenetics: the impact of using single regions and partitioning schemes on topology, substitution rate and divergence time estimation. PLoS ONE, 6: e27138. https://doi.org/10.1371/journal.pone.0027138.
  13. Hall, T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser., 41: 95-98.
  14. Imamura, H. 1996. Phylogeny of the family Platycephalidae and related taxa (Pisces: Scorpaeniformes). Species Divers., 1: 123-233. https://doi.org/10.12782/specdiv.1.123.
  15. Imamura, H., M. Komada and T. Yoshino. 2006. Record of the flathead fishes (Perciformes: Platycephalidae) collected from Nha Trang, Vietnam. Coastal Mar. Sci., 30: 293-300. https://doi.org/10.11646/zootaxa.3904.2.1.
  16. Jorgensen, T.E., I. Bakke, A. Ursvik, M. Andreassen, T. Moum and S.D. Johansen. 2014. An evolutionary preserved intergenic spacer in gadiform mitogenomes generates a long noncoding RNA. BMC Evol. Biol., 14: 182. https://doi.org/10.1186/s12862-014-0182-3.
  17. Luo, X., Q. Li, Z. Wang, J. Xiao, T. Yang, T. Gao and X. Wang. 2019. Complete mitochondrial genome sequence of flathead fish Platycephalus sp. 1 (Scorpaeniformes: Platycephalidae). Mitochondrial DNA B Resour., 4: 1570-1571. https://doi.org/10.1080/23802359.2019.1602007.
  18. Martin, M. 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J., 17: 10-12. https://doi.org/10.14806/ej.17.1.200.
  19. Metzker, M.L. 2009. Sequencing technologies - the next generation. Nat. Rev. Genet., 11: 31-46. https://doi.org/10.1038/nrg2626.
  20. Meyer, A. 1993. Evolution of mitochondrial DNA in fishes. In: Hochachka, P.W. and T.P. Mommsen (eds.), Molecular Biology Frontiers: Biochemistry and Molecular Biology of Fishes. Elsevier Science, Amsterdam, Netherlands, pp. 1-38.
  21. Page, R.D.M. 1996. Tree View: An application to display phylogenetic trees on personal computers. Bioinformatics, 12: 357-358. https://doi.org/10.1093/bioinformatics/12.4.357.
  22. Puckridge, M., P.R. Last, D.C. Gledhill and N. Andreakis. 2019. From the tropics to the pole and back again: Radiation in the flathead fishes (Platycephalidae) across Australia and the Indo-West Pacific. J. Biogeogr., 46: 680-693. https://doi.org/10.1111/jbi.13484.
  23. Qin, Y., N. Song, J. Zou, Z. Zhang, G. Cheng, T. Gao and X. Zhang. 2013. A new record of a flathead fish (Teleostei: Platycephalidae) from China based on morphological characters and DNA barcoding. Chin. J. Oceanol. Limnol., 31: 617-624. https://doi.org/10.1007/s00343-013-2186-z.
  24. Richardson, J. 1846. Report on the ichthyology of the seas of China and Japan. Rep. Brit. Assoc. Adv. Sci., 1845: 187-320.
  25. Ronquist, F. and J.P. Huelsenbeck. 2003. MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19: 1572-1574. https://doi.org/10.1093/bioinformatics/btg180.
  26. Satoh, T.P., M. Miya, K. Mabuchi and M. Nishida. 2016. Structure and variation of the mitochondrial genome of fishes. BMC Genom., 17: 719. https://doi.org/10.1186/s12864-016-3054-y.
  27. Tavare, S. 1986. Some probabilistic and statistical problems in the analysis of DNA sequences. In: Miura, R.M. (ed.), Some Mathematical Questions in Biology - DNA Sequence Analysis. Am. Math. Soc., Providence, R.I., U.S.A., pp. 57-86.
  28. Wataru, I., F. Tsukasa, I. Ryota, Y. Koichiro, M. Yasunobu, P.S. Takashi, S. Tetsuya, M. Kohji, T. Hirohiko, M. Masaki and N. Mutsumi. 2013. MitoFish and MitoAnnotator: A mitochondrial genome database of fish with an accurate and automatic annotation pipeline. Mol. Biol. Evol., 30: 2531-2540. https://doi.org/10.1093/molbev/mst141.
  29. Xu, Z., Y. Ye, H. Yang, M. Xu and B. Guo. 2019. The complete mitochondrial genome of Minous monodactylus (Minoinae: Synanceiidae: Scorpaeniformes) and phylogenetic studies of Scorpaeniformes. Mitochondrial DNA B Resour., 4: 1670-1671. https://doi.org/10.1080/23802359.2019.1606684.
  30. Zhang, H., K. Shen, S. Feng, C. Wang and S. Xu. 2021. The complete mitochondrial genome of Platycephalus sp. 1 (Teleostei, Platycephalidae) obtained by whole genome sequencing. Mitochondrial DNA B Resour., 6: 1941-1943. https://doi.org/10.1080/23802359.2021.1937361.