DOI QR코드

DOI QR Code

Analysis of Burn-back Tendency on the Finocyl Grain

Finocyl 그레인의 Burn-back 경향성 분석

  • Received : 2020.12.28
  • Accepted : 2021.02.21
  • Published : 2021.04.30

Abstract

In this study, the design criteria is presented for Finocyl grain, which is easy to generate neutral thrust when designing solid rocket motors. For this purpose, an automated program using drafting method was developed for burn-back analysis and its accuracy was validated. Using this developed program, burn-back analysis was performed with various configuration parameters of Finocyl grain, and the tendency and sensitivity analysis on burning characteristics were performed. Based on this analysis, the design criteria were presented to generate the neutral burning surface area trace for a Finocyl grain.

고체 로켓 모터 설계 시 중립형 추력선도 발생이 용이한 Finocyl 그레인에 대한 형상 설계 기준을 제시하였다. 이를 위해 Burn-back 해석을 위한 제도 기법을 이용한 자동화 프로그램을 개발하고 정확성을 검증하였다. 개발된 프로그램을 이용하여 Finocyl 형상의 다양한 형상 변수에 따른 Burn-back 해석을 수행하고 연소 특성의 경향성과 민감도 분석을 수행하였다. 분석결과를 바탕으로 Finocyl 그레인을 이용한 중립형 연소면적선도를 나타내는 설계기준을 제시하였다.

Keywords

Acknowledgement

이 연구는 (주)LIG넥스원의 지원(61870-01)을 통해 수행되었으며, 이에 감사드립니다.

References

  1. Sutton, G.P., Rocket Propulsion Elements, 8th Ed., John Wiley & Sons Inc., New York, 2010.
  2. Puskulcu, G. and Ulas, A., "3-D grain burnback analysis of solid propellant rocket motors: Part 2-modeling and simulations," Aerospace Science and Technology, Vol. 12, No. 8, pp. 585-591, 2008. https://doi.org/10.1016/j.ast.2008.01.002
  3. Nisar, K., Guozhu, L. and Zeeshan, Q., "A hybrid optimization approach for SRM grain design," Chinese Journal of Aeronautics, Vol. 21, No. 6, pp. 481-487, 2008. https://doi.org/10.1016/S1000-9361(08)60164-8
  4. Mesgari, S., Bazazzadeh, M. and Mostofizadeh, A., "Finocyl grain design using the genetic algorithm in combination with adaptive basis function construction." International Journal of Aerospace Engineering, 2019.
  5. Kamran, A., Gouzhu, L., Godil, J., Siddique, Z., Zeeshan, Q. and Rafique, A., "Design and performance optimization of Finocyl grain," AIAA Modeling and Simulation Technologies Conference, 2009.
  6. Oh, S.H., Lee, S.B., Kim, Y.C., Cha, S.W., Kim, K.R., Kim, D.M. and Ro, T. S., "Study on Solid Propellant Grain Burn-back Analysis Applying Face Offsetting Method," Journal of the Korean Society of Propulsion Engineers, Vol. 23, No. 4, pp. 81-91, 2019. https://doi.org/10.6108/KSPE.2019.23.4.081
  7. Oh, S.H., Kim, Y.C., Cha, S.W. and Ro, T. S., "Study of Hybrid Optimization Technique for Grain Optimum Design," International Journal of Aeronautical and Space Sciences, Vol. 18, No. 4, pp. 780-787, 2017. https://doi.org/10.5139/IJASS.2017.18.4.780
  8. Willcox, M. A., Brewster, M.Q., Tang, K. C. and Stewart, D.S., "Solid propellant grain design and burnback simulation using a minimum distance function," Journal of Propulsion and Power, Vol. 23, No. 2, pp. 465-475, 2007. https://doi.org/10.2514/1.22937
  9. Cavallini, E., Favini, B., Di Giacinto, M. and Serraglia, F., "Internal Ballistics Simulation of NAWC Tactical Motors with SPINBALL Model," 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2016.
  10. Hartfield, R., Jenkins, R., Burkhalter, J. and Foster, W., "A review of analytical methods for solid rocket motor grain analysis," 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 2003.
  11. Coats, D., Dunn, S. and French, J., "Improvements to the solid performance program (SPP)," 39th AIAA/ASME/ SAE/ASEE Joint Propulsion Conference and Exhibit, 2003.
  12. Cavallini, E., Favini, B., Di Giacinto, M. and Serraglia, F, "Internal ballistics simulation of a NAWC tactical SRM," Journal of Applied Mechanics, Vol. 78, No. 5, 2011.
  13. Willcox, M.A., Brewster, M.Q., Tang, K.C., Stewart, D.S. and Kuznetsov, I., "Solid rocket motor internal ballistics simulation using three-dimensional grain burnback," Journal of Propulsion and Power, Vol. 23, No. 3, pp. 575-584, 2007. https://doi.org/10.2514/1.22971
  14. Turanyi, T., "Sensitivity analysis of complex kinetic systems. Tools and applications," Journal of Mathematical Chemistry, Vol. 5, No. 3, pp. 203-248, 1990. https://doi.org/10.1007/BF01166355