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Introduction
Mycobacterium tuberculosis  (MTB) which is at least as 

old as human life on Earth, is one of the major challenges to 
human health1,2. Infection with MTB has been estimated in 
approximately one third of the global population3. The World 

Health Organization (WHO) reported that MTB is a pre-
eminent cause of mortality (1.8 million deaths) worldwide 
in 2018, which is responsible for more deaths than human 
immunodeficiency virus and malaria4. Tuberculosis (TB)-in-
fected persons are classified into two groups as (1) those with 
active TB presenting clinical or radiological manifestations 
of infection supported by laboratory evidence, (2) and those 
with latent tuberculosis infection (LTBI), which is an asymp-
tomatic clinical presentation considering the largest reservoir 
for potential transmission5. Approximately 23% (1.7 billion 
people) of the world’s overall population suffers from LTBI3.

The term LTBI was first proposed by Von Pirquet (1907), the 
‘Godfather’ of the tuberculin skin test when he detected tuber-
culin skin reactions of ≥5 mm in children who did not mani-
fest tuberculosis6. Lateral McCune et al. (1956‒1996) showed 
the persistence of latent tubercle bacilli for extended times 
after chemotherapy, shortly after the launch of isoniazid. Their 
well-designed investigation, named the ‘Cornell model’ by the 
academic institute wherein the research was conducted, can 
be regarded a main work on mycobacterial latency and its 
relation to tuberculosis chemotherapy7. The abundant con-
tingent indications from consideration of the natural history 
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of tuberculosis in humans and experimental animals indicate 
that MTB is able to adapt to prolong periods of dormant sta-
tus in tissues, and that such dormant bacilli are the causative 
agent for latency of the disease itself. Besides, the dormant 
bacilli can resist eradication by antimycobacterial agents8. 
Accordingly, the WHO end TB Strategy targets treatment of 
diseased people as well as LTBI cases who are at the risk of 
advancement to TB disease. Therefore, prevention of LTBI de-
velopment to active TB seems to be an essential public health 
objective, which could markedly decline the TB reservoirs9.

The risk of TB recurrence during the life of an individual 
with confirmed LTBI is predicted to be 5%–15%, and most of 
them develop active TB during the first 5 years following early 
infection10. Nonetheless, the probability of LTBI development 
to TB disease is dependent upon various factors including 
bacterial, host, and environmental parameters. Basically, 
LTBI can be remarked as an equilibrium condition between 
host and mycobacteria4. In response to MTB infection, most 
patients represent a robust immune response, resulting a low 

bacillary burden in the absence of clinical and radiographic 
findings. In this situation, the host immune response prevents 
developing active disease, and the tubercle bacilli evade im-
mune elimination11. 

In LTBI stage, bacilli can survive in a modified physiologi-
cal state in MTB-infected macrophages and escape to activity 
immune system12. However, despite several years of exami-
nation, the accurate locality of the latent mycobacteria is still 
mysterious. Moreover, in some cases of LTBI, persistent bacilli 
appear as the antibiotic-tolerant organisms which are nonrep-
licating and exhibit reduced metabolic activity. Reduced sus-
ceptibility to elimination by cell wall structure inhibitor agents 
such as isoniazid is a general characteristic of persistent bacilli 
in LTBI13. The structural and physiological changes which oc-
cur permanently in MTB are associated with the expression of 
various genes, enabling the bacteria to survive under latency 
conditions14. Therefore, for a better understanding of latency 
in MTB, the genes allowing bacteria to survive and escape 
from the immune system need to be more investigated15. In 

Table 1. Genes involved in the latent stage

Category Identifier Gene name Product (probably)
Length 

(bp)
Location 

(bp)

Genes involved in 
metabolic changes

Rv0467 icl Isocitrate lyase 1,287 557,527

Rv1837c glcB Malate synthase g 2,226 2,086,037

Rv1832 gcvB Glycine dehydrogenase 2,826 2,075,877

Rv1161-4 narGHJI Nitrate reductase 3,699 1,287,328

Rv1737c narK2 Putative nitrate/nitrite transporter NarK2 1,188 1,964,183

Rv1736c narX Putative nitrate reductase NarX 1,959 1,962,228

Genes involved in cell 
wall changes

Rv0470c pcaA Cyclopropane mycolic acid synthase 3 864 560,848

Rv0126 treS Trehalose synthase 1,806 152,354

Signal transduction Rv3133c dosR Two-comp. resp. reg 654 3,499,262

Rv3132c dosS Two-comp. resp. reg 1,737 3,497,529

Rv2027c dosT Two-comp. resp. reg 1,722 2,272,787

Rv0757 phoP Possible two-component system response 
transcriptional positive regulator PhoP

744 851,608

Rv0981 mprA Two-component response transcriptional regulatory 
protein MprA

687 1,096,822

Rv1028c kdpD Probable sensor protein KdpD 2,583 1,149,104

Rv1027c kdpE Probable transcriptional regulatory protein KdpE 681 1,148,427

Rv3764c tcrY Putative two component sensor kinase TcrY 1,428 4,209,582

Rv1032c trcS Two-component sensor histidine kinase TrcS 1,530 1,156,426

Rv3286c sigF AlteRNAtive RNA polymerase sigma factor SigF 786 3,657,603

Rv3223c sigH RNA polymerase σ factor 651 3,598,901

Rv1221 sigE AlteRNAtive RNA polymerase sigma factor SigE 774 1,364,413

Rv3416 whiB3 Transcriptional regulatory protein whib-like WhiB3 309 3,832,240
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this regard, we tried to overview the genetic information of la-
tency in MTB16. The general characteristics of the genes exam-
ined in this review are summarized in Table 1. The genes in-
vestigated in this study are evaluated based on their functional 
relevance into three groups of (1) genes involved in metabolic 
changes, (2) genes involved in cell wall changes, and (3) signal 
transduction which are discussed below (Table 1).

Genes Involved in Metabolic Changes in 
the Latency Stage

One of the abilities of MTB strain is its quick adaptability 
with the environment17. A considerable number of studies 
demonstrate that metabolic pathways in MTB changed after 
entering the macrophage18. The presence of MTB in macro-
phages leads to granuloma formation in human’s lung. The 
presence and survival of MTB in lung granulomas has been 
investigated in several studies, and it has been shown that 
MTB is likely to be present in the environment with condi-
tions such as oxygen depletion, redox stress, increased carbon 
dioxide, nutrient degradation, and pH reduction19. In aerobic 
conditions of the MTB, the oxidative phosphorylation tricar-
boxylic acid (TCA) cycle is used to generate energy from the 
pathway of the electron transfer channel (ETC) for the proton 
transfer energy. In anaerobic conditions, which reduce oxygen 
levels, the bacteria will not be able to use conventional path-
ways to generate energy and use the ETC pathway to trans-
mit electrons20,21. The adaptation of MTB to this condition 
requires the expression of different genes, in order to activate 
the appropriate metabolic pathways to supply the energy it 
needs. Modifying the metabolic process requires the altera-
tion of the produced enzymes. The production of enzymes 
required for changes in the metabolic process necessitates 
altering the expression of genes involved in the production of 

these enzymes. In this section, the expression of icl , glcB, gcvB, 
narGHJI, narK2, and narX genes in latency and their effect on 
mycobacterial viability are investigated20,21. In Figure 1, it has 
been attempted to illustrate the modification of metabolic 
pathways and thus the alteration of production of the required 
enzymes in the metabolic cycles, which are caused by the ex-
pression of these genes.

1. icl  gene 

The icl gene MTB encodes the isocitrate lyase (ICL)22, which 
is the primary enzyme in the glyoxylate (GLX) cycle23. icl  gene 
characteristics of the gene are summarized in Table 1. This 
enzyme is necessary for the use of fatty acid by bacteria24 and 
important for latency in MTB, which is called “persistence fac-
tor”25. In 1998s, the icl  gene was sequenced for the first time by 
Cole et al.22 and has been studied extensively since then. This 
results in the change of isocitrate to GLX and succinate. When 
the MTB Δicl  mutant was examined, it was shown that its ac-
tivity had not changed in macrophage resting mode, while it 
had significantly reduced in active mode25. The main source 
of carbon and energy in MTB is fatty acids, which is provided 
by beta-oxidation. At the time of the hypoxic, ICL production 
increases significantly (five times). When the carbon source 
is reduced, the ICL enables the bacteria to use fatty acids as a 
source of carbon and energy using GLX26. Several studies have 
shown that the expression of the icl  gene for MTB transmis-
sion is necessary from critical to stable status18 (Figure 1). The 
presence of this gene preserves MTB life in latency conditions 
and therefore contributes to the persistence of infection in the 
human’s body27. Not only is the ICL a key enzyme in the sur-
vival of mycobacteria, but it also is not present in humans, so it 
can be considered a therapeutic target.
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Figure 1. Metabolic changes induced by 
hypoxia. Enhanced expression of the icl  
gene caused the conversion of isocitrate 
to glyoxylate and succinate. The glcB and 
gcv B genes are involved in the conver-
sion of glyoxylate to malate and glyoxyl-
ate to glycine, respectively. The electrons 
generated in this pathway may lead to 
nitrate reduction, which is also associ-
ated with increased dosR expression. In-
creased dosR expression also affects the 
expression of other genes such as narK2 
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2. glcB gene

Many studies have been done on glcB gene since it was the 
first identified28. The glcB  gene codes the malate synthase, 
which leads to bypass of GLX, together with the production 
of the ICL enzyme by the icl gene29. This probably enables 
the MTB pathway to adapt itself to anaerobic conditions and 
nutrient deficiencies. These two enzymes also provide the ex-
change of isocitrate to malate, which helps to keep continuing 
the TCA cycle30. However, studies have shown that there was 
no significant increase in the production of this enzyme under 
hypoxic conditions29 (Figure 2). Since this enzyme is involved 
in the GLX, and this anaplerotic pathway is not present in 
mammals, it can be investigated as an option for treatment of 
tuberculosis. 

3. gcvB gene

gcv B gene codes glycine dehydrogenase (GDH), which 
most likely encodes the P protein of the glycine cleavage sys-
tem (GCS)31. The function of this enzyme, first identified in 
MTB in 1962, was detected in nonreplicating persistent (NRP) 
MTBs32. As gcvB and gcvH are located in the operon associ-
ated with glycine catabolism, the GCS may use glycine as a 
source of nitrogen33. Increasing the expression of this enzyme 
in hypoxia conditions in non-proliferative MTB is shown8. 
The GDH catalyzes the amination of glyoxalate to glycine and 
simultaneously catalyzes the oxidation of NADH to NAD8. 

The activity of GDH has been shown to be stable in vitro 32. Al-
though it showed that the gcvB gene is involved in the expres-
sion of the GDH enzyme, other genes are also involved in this 
process, and further study of the interaction of these genes on 
this enzyme is needed.

4. narGHJI gene

This gene codes nitrate reductase34. Although nitrate reduc-
tase enzyme activity encoded by this gene is low in aerobic 
conditions, it increases in microaerophile35. Such a function 
may be related to the compliance of MTB in a permanent 
condition36. However, it has been shown that hypoxic condi-
tions do not affect narGHJI expression36. It is noteworthy that 
even though nitrate reductase is unaffected, when oxygen is 
gradually depleted (over a period of more than 46 days), ni-
trate release reductase increases in the event of an immediate 
discharge of oxygen36. Nitrate is reduced to nitrite by nitrate 
reductase to produce bacterial energy to enter the NRP step29. 
It has been shown that the activity of nitrate reductase in MTB 
leads to the continuation of the electron transfer chain under 
microaerophilic or anaerobic conditions37. In addition to the 
narGHJI gene, the narK2 and narX genes are also involved in 
nitrate reduction, which are discussed below.

5. narK2 gene

nark2 gene encodes the transporter nitrate, which is ex-
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pressed in hypoxic conditions38. The release of nark2 in 
hypoxia conditions probably increases nitrite production 
in MTB39. Unlike narGHJI , it has been shown that narK2 is 
produced in response to the presence of nitrate or nitrite40. 
Another contrast with narGHJI is that, unlike narGHJI, the ex-
pression of narK2 increases in hypoxia and decreases in nitric 
oxide levels41. This increase in activity is probably due to the 
fact that the hypoxia and the presence of NO lead to the inac-
tivation of cytochrome oxidase and the activation of narK2 42. 
It has been shown that ΔnarK2 mutant does not affect the ex-
pression of hypoxia41. The NarK2 protein is positioned on the 
surface of the membrane, and can detect the oxygen level of 
the environment as a sensor, which has been shown to main-
tain the amount of ATP in hypoxia conditions40. The DosR/
DevR controller transcribes narK2 in hypoxic situations and 
reduces NO levels43.

6. narX gene

narX gene encodes fused nitrate reductase31. The studies 
have shown that narX is homologous with nitrate reductase 
proteins in other prokaryotes31. Although the function of narX 
has not been completely detected, studies have shown that 
the expression of this gene in the presence of NO increases 
over 800 times44. NarX is a membrane protein which is likely 
to contribute to the electron transport chain45. It has been sug-
gested that in the absence of oxygen, NarX in the environment 
can lead to respiratory depression of nitrate as an electron 
transfer44. It has been determined that narX is the first gene 
to be replicated in latent MTB45. Therefore, it is suggested 
that the expression of this gene be used as a marker for latent 
MTB diagnosis44. However, nark2 is expected for induction of 
nitrates reductase activity in anaerobic conditions, but narX 
is not required44. Nitrate reduction is one of the activities per-
formed under hypoxia at the latency stage, and the investiga-
tion of the genes involved in this activity is important to better 
understand the latency process.

Genes Involved in Cell Wall Changes in 
the Latency Stage

One of the characteristics of MTB is the unique cellular 
wall, due to which the bacterium inside the cell survives. The 
significant part of this structure are the lipids, and mycolic 
acid consists of 60% of the cell wall lipids. In the cell wall, there 
are high molecular weight fatty acids (60–90 carbon), which 
are common to all mycobacteria species46. One of the unique 
characteristics of MTB cell cover is the presence of 2-alkyl, 
mycolic acid, and 3-hydroxy fatty acids. The cellular structure 
of MTB prevents the immune system response to the bacteria. 
Furthermore, MTB cell wall compounds make it flexible and 
fluid. The formation of granuloma is one of the reasons for 

MTB survival, so MTB is stationary in the latent state of granu-
loma. One of the reasons for the formation of granuloma is the 
presence of the structure of trehalose-6,6’-dimycolate (TDM), 
which is also known as the cord-factor47. TDM is identified 
by a receptor called the minacle located on the macrophage, 
which creates granuloma with NO production48. Another ef-
fect of this lipid is its inhibitory effect on the migration of leu-
kocytes, which plays a significant function in the survival of the 
bacteria. In addition to TDM, latent changes occur in the MTB 
cell wall, which is associated with a change in the expression 
of the genes related to it49. These genes are briefly discussed in 
the following sections.

1. pcaA

The pcaA gene codes the cyclopropane synthase enzyme50. 
The activity of this enzyme is required for cyclopropanation 
of mycolic acid51. PcaA phosphorylation leads to a decrease 
in the synthesis of cyclopropane, involving the exchange of 
mycolic acid profiles52. One of the effects of changing the my-
colic characterization profile is the stoppage of intracellular 
bacterial replication and the absence of formation of a phago-
some maturation block (PMB)52. The ΔpcaA mutant study has 
revealed that this mutant does not have the ability to produce 
any serpentine cords and not only does not lead to persistence 
in mouse models but also results in the death of the mouse52. 
As mentioned before, PcaA is implicated in the formation of 
PMB and mycolic acid, which leads to the survival of MTB in 
the host macrophages in latent stage51. The results of the stud-
ies indicate that pcaA gene activity is required for mycobacte-
rial cell survival and is needed for the escape of macrophage 
killing.

2. treS

treS gene encodes the trehalose synthase (TreS) enzyme53. 
TreS substrates are trehalose or maltose, but the ability to 
produce trehalose from maltose is 2.5 times54. Trehalose is lo-
cated in the cytoplasm and glycolipids cell wall of mycobacte-
rium55. This compound not only acts as a virulence factor, but 
also has many other roles54. Among different roles of trehalase 
is the one that it can be used as carbon and energy source as 
well as its inhibitory effect on bacterial drying and freezing56. 
Although treS removal has no effect on the amount of intracel-
lular trehalose, its expression increases the amount of treha-
lose in the cell, which indicates the role of this gene in the con-
centration of intracellular maltose54. One of the structures of 
trehalose is TDM, which is one of the important pathogenicity 
factors (Figure 2)54. As previously stated, TDM plays a pivotal 
role in the survival of MTB by formation of granuloma and in-
hibiting the formation of phagosome lysosome fusion54. Since 
trehalose plays both a major role in the cell wall structure and 
protects mycobacteria under environmental stress condi-
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tions, investigating the genes involved in trehalose utilization 
pathways might be useful for better understanding the latency 
stage.

Signal Transduction and Latency
Signal transduction is one of the factors affecting MTB sur-

vival in a granuloma, which contributes to bacterial survival 
under conditions such as acidity decrease, nutrient deficien-
cies, and environmental oxygen depletion57. In this review, 
two-component systems (TCS) and sigma factors are exam-
ined in detail.

1. Two-component systems

Eleven TCS have been identified in MTB, which is far lower 
than other bacteria, including Escherichia coli (more than 
30)58. TCS in Mycobacterium has several physiological func-
tions, but these functions are not completely understood59. 
One of the functions of TCS is to help maintain bacterial living 
under environmental degradation conditions (such as mac-
rophage environment or antimicrobial agents), and TCS is 
an extremely effective factor in bacterial pathogenesis60. The 
TCS includes sensor histidine kinase (HK), which, using phos-
phorylation cognate response regulator (RR), regulates the 
expression of the gene and creates an appropriate response to 
the sensor59. A significant characteristic of TCS, its presence in 
all prokaryotes and its nonbeing in high-level eukaryotes, has 
made it a valuable treatment option61. It has been shown that 
the amount of pathogenicity in mutant lacking TCS consider-
ably decreases58. TcrX and TcrY of open reading frames play 
an important role in coding RR and HK, respectively62. 

1) dosR
The dosR  regolone consists of approximately 50 genes 

(Table 2)63,64, which are essential for survival in the latent pe-
riod65. DosR is a transcritical factor, which plays a significant 
role in adapting to the initial conditions of hypoxia, reducing 
NO and carbon monoxide levels66. It has been revealed that 
DosR leads to the regulation of the TAG (TAG production 
gene tgs1) gene, Tgs (TAG), which also stops the production of 
TAG by removing DosR, and the increase of TAG production 
by provoking DosR67. The DosR regolon promotes the pro-
duction of antigens, which are identified by T-cells at latency, 
and are essential for controlling infection. It is likely that T-cell 
response is due to the induction of interleukin (IL)-10, IL-17, 
and interferon-γ production in the latent condition68.

In this two-compound system, DosS and DosT act as HK, 
which activate DosR69. Transcription of the dosR, dosS genes 
occur together, possibly due to the genetic association of 
them70. The dosR and dosS genes are considered preserved 
genes, while the dosT gene is preserved less71. Studies have 

Table 2. Genes regulated by dosR under hypoxic conditions

Gene name Identifier Function

Rv0079 Rv0079 Unknown

Rv0080 Rv0080 Unknown

Rv0081 Rv0081 Involved in transcriptional 
mechanism

Rv0082 Rv0082 Unknown

Rv0083 Rv0083 Unknown

Rv0569 Rv0569 Unknown

nrdZ Rv0570 Involved in the DNA replication 
pathway

Rv0571c Rv0571c Unknown

Rv0572c Rv0572c Unknown

Rv0574c Rv0574c Unknown

MT0639 MT0639 Unknown

Rv1733c Rv1733c Unknown

Rv1734c Rv1734c Unknown

narX Rv1736c Involved in nitrate reduction

narK2 Rv1737c Involved in excretion of nitrite

Rv1738 Rv1738 Unknown

Rv1812c Rv1812c Unknown

Rv1813c Rv1813c Unknown

Rv1996 Rv1996 Unknown

ctpF Rv1997 Metal cation-transporting ATPase

Rv2003c Rv2003c Unknown

Rv2004c Rv2004c Unknown

Rv2005c Rv2005c Unknown

otsB1 Rv2006 Involved in trehalose biosynthesis

fdxA Rv2007c Involved in electron transfer

Rv2028c Rv2028c Unknown

pfkB Rv2029c Involved in glycolysis

Rv2030c Rv2030c Unknown

hspX Rv2031c Stress protein induced by anoxia

acg Rv2032 Unknown

TB31.7 Rv2623 Unknown

Rv2624c Rv2624c Unknown

Rv2625c Rv2625c Unknown

hrp1 Rv2626c Unknown

Rv2627c Rv2627c Unknown

Rv2628 Rv2628 Unknown

Rv2629 Rv2629 Unknown

Rv2630 Rv2630 Unknown

Rv2631 Rv2631 Unknown

vapB22 Rv2830c Unknown
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shown that DosR activity is necessary for the adaptation of 
MTB in hypoxia conditions69. It is also observed in studies 
that, despite the structural similarities in DosT and DosS, 
these proteins are functionally different, so DosT acting as a 
direct oxygen sensor and DosS as a redox sensor66. Since the 
expression of dosR regolon increases in the latency stage, and 
T cells show specific responses to some of the antigens which 
are specific to the regolon, it is considered a candidate for the 
production of a vaccine and drug.

2) phoP gene
The phoP gene codes the transcriptional regulator of the 

TCS PhoPR. PhoP has been distinguished as having several 
functions that appear to be essential during latency to keep 
the bacteria alive72. phoP leads to the regulation of the expres-
sion of the genes of pks2 (induction of sulfolipids production), 
pks3 (induction of polyacyltrehalose/diacyltrehalose produc-
tion) and ald (induction of L-alanine dehydrogenase produc-
tion)73. This phoP also provides the metabolism of cell wall 
fats, the regulation of the intestinal acidity of the cell, the adap-
tation to the conditions of thermic stress, and the response to 
the early stages of hypoxia in MTB74. Another significant point 
is that of the expression of the icl  gene is negatively regulated 
by phoP. It has been designated that although ΔphoP mutant 
does not have the capability to replicate, it can survive in the 
macrophage72. Although the phoP gene is required for myco-
bacterial intracellular growth, the need for it in the latency is 
still controversial.

3) mprA
The mprA gene encodes the two-component regulator31. 

MprA is part of the MtrA-MtrB system, which was the first 

TCS system to be distinguished in the 1990s75. This system is 
involved in controlling MTB replication in macrophages and 
regulating significant processes of MTB physiology57,76. Studies 
have shown that the expression of the mprA gene is effective 
in maintaining latency infection in MTB so that the ΔmprA 
mutant does not have the ability to keep the infection in a la-
tent status77. The role of MprA in regulating the expression of 
the DosR regolum and Rv1813, which is involved in regulating 
the expression of type II NADH dehydrogenase, is shown in 
some unfavorable environmental conditions78. Identification 
of regulatory functions of MprA leads to a better understand-
ing of the mechanisms involved in latency stage in the host 
and will ultimately lead to a better understanding of how to 
establish TB control in the latency stage.

4) kdpDE
The two-component kdpDE system is expressed by the 

Rv1027c and Rv1028c genes79. It has been reported that kd-
pDE TCS is present in many species of bacteria (more than 
1,000 species), which are extensively protected80. The expres-
sion of kdpDE increases in incompatible conditions such as 
reduced nutrients, temperature stress, acidity, and hypoxia. In 
vivo, kdpD expression increases in nutrient depravity condi-
tions, and expression of kdpE also increases during growth 
in macrophages81. Both kdpD and kdpE genes are located on 
an operon, and they are expressed in a particular variant. The 
position of phosphorylation in KdpD and KdpE is His642 and 
Asp52, respectively, where the phosphorylation of KdpD and 
the transfer of the phosphoryl group to KdpE leads to the re-
sponse to fluctuations in the acidity of the environment79. The 
results of our studies indicate that kdpDE leads to a decrease 
in mycobacterial growth within the macrophage, which may 
be due to a change in the mycobacterial cell wall. This func-
tion can be important in preserving mycobacteria in the la-
tency phase.

5) tcrY
The tcrY gene encodes the two-component regulator31. tcrY 

and tcrX are implicated in the formation of TCS TcrX/Y in 
MTB82. This system is protected in all species of Mycobacte-
rium except Mycobacterium leprae 62. It has been confirmed 
that in mouse models where tcrX/Y is eliminated, the severity 
of the disease increases, and the mouse model dies earlier83. 
TcrY contains three domains, including the C-terminal located 
in the outer the cell, a membrane domain, and the N-terminal 
part positioned in the space of cytosol82. TcrX is also generally 
located in the cytosol section84. TcrY is phosphorylated in the 
presence of Mg2+ or Ca2+ ions, which passes this phosphorus to 
TcrX84. It is shown that tcrY and tcrX are apparently translated 
in one pathway84. Although the results of the present study 
indicate that tcrY is expressed under conditions of iron restric-
tion and post-infection, little is known about the conditions 
affecting the expression of this two-component regulator; 

Table 2. Continued

Gene name Identifier Function

Rv3126c Rv3126c Unknown

Rv3127 Rv3127 Unknown

Rv3128c Rv3128c Unknown

Rv3129 Rv3129 Unknown

tgs1 Rv3130c Involved in synthesis of 
triacylglycerol

Rv3131 Rv3131 Unknown

devS Rv3132c Sensor part of the two-component 
regulatory system DEVR/DEVS/
dost

devR Rv3133c Regulator part of the two-
component regulatory system 
DEVR/DEVS/dost

Rv3134c Rv3134c Unknown

bfrB Rv3841 Involved in iron storage
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therefore, further studies are needed to investigate the effect of 
this gene on latency.

6) trcSR
The trcSR TCS is coded by trcS and trcR, respectively85. In 

this TCS, TrcS with phosphorylation in the presence of Mg2+ or 
Ca2+ ions leads to the transfer of phosphorus to TrcR86. Despite 
studies of the function of this system, the only evidence that 
indicates the expression of TCS trcSR in latency is that the sys-
tem is expressed at an early stage of infection in macrophages 
and in conditions of reduced oxygen in the environment84. 
However, its precise function is still not completely defined86. 

2. Sigma factors

Sigma factors are present in all bacteria except in Myco-
plasma. They also regulate expression, therefore responding 
to environmental stress requires the formation of a network 
of factors so that the bacteria can survive. In addition, the 
reprogramming of RNA polymerase is required to translate 
the factor σ87. In general, sigma factors are divided into two 
main groups, which include σ54 and σ7088. In MTB, there is 1 
(sigma) of the ‘housekeeping’ factor and 12 σ ancillary factors. 
Housekeeping σ factor is expressed in response to natural 
conditions, while σ ancillary factors are expressed in response 
to environmental stresses89. All of the σ factors available in 
the MTB are σ70, and the presence of this type of σ factor has 
been confirmed in all bacterial species88,90.

1) sigF
SigF expression occurs at the stationary stage as well as 

in the presence of environmental stress such as cold stress, 
nutrient depletion, acidity change, and the presence of drugs, 
particularly metronidazole89. SigF expression is regulated by 
Usfx91. In addition to being directly involved in the expression 
of 14 other genes, SigF is also engaged in the expression of 
other sigma factors. For example, it influences on viral viru-
lence by affecting the expression of SigC92. Identification of 
genes involved in preserving bacterial life at the late stage of 
growth important to eliminate MTB at this stage because it 
can help identify the therapeutic process.

2) sigH
Sigma H is expressed in response to high-temperature 

stress, oxidative thiol, and macrophage entry22,93-95. sigH gene, 
like most of the genes examined in this study, was identified by 
the MTB genes sequence in the 1980s22. SigH is implicated in 
the translation of 31 structural genes, leading to the induction 
of sigB and sigE96. It is acknowledged that sigH is expressed 
when MTB enters the host cell, so the expression of this factor 
may be effective in provoking latency97. Thus, many studies 
have determined that Δ-σH mutant in the murine model will 
not be able to induce normal granuloma95. sigH gene studies 

indicate that it plays an important role in the regulation of heat 
and oxidative stress response and is probably important in the 
pathogenesis of MTB.

3) sigE
SigE is involved in the expression of genes that lead to 

pathogenicity which has been studied in many studies95. SigE 
is expressed in response to oxidative stress, sodium dodecyl 
sulfate detergent, and high temperature, so the viability of sigE 
mutants would be much lower under these conditions, and its 
growth decreases in the granuloma and mouse model95. Stud-
ies have also confirmed that the induced immune response to 
the sigE mutant would be more effective in the BALB/c mouse 
model, making this sigma a candidate for the vaccine95,98. 
Therefore, as a therapeutic option, further understanding of 
this gene’s function and its implications seems to be a neces-
sity.

4) whiB
WhiB3, a cytoplasmic redox sensor, is required to induce 

MTB resistance under acidic stress conditions99. WhiB3 
regulates the expression of genes engaged in responding to 
decreased acidity, hypoxia, NO reduction, redox metabo-
lism, and lipid anabolism100. It has been revealed that the 
MTBΔwhiB3 mutant greatly reduces its virulence severity 
in the mouse model. WhiB expression is induced during the 
early stage of rat lung infection and resting macrophages, but 
is suppressed in activated macrophages99. Although the func-
tion of whiB has been demonstrated in situations of changes 
in oxygen concentration, its precise role in MTB adaptation to 
these changes has not been elucidated, so further investiga-
tions in this area are essential. 

Conclusion
“Latency”, “persistence”, and “dormancy” are common terms 

which are used interchangeably in related studies. When a 
person is infected by MTB, the bacterium is capable of per-
sisting during a prolonged period in a process named LTBI. 
Conventionally, LTBI has been known to engage in the bacilli 
lasting in a non-duplicating state in old lesions but still main-
taining their capability to cause reactivation and active TB 
upon occurrence of an immune response disturbance.

In this study, we attempted to induce the distinguished 
latency genes in MTB. Understanding the latency requires 
the identification of genes that can sustain MTB to survive in 
hypoxia, nutrient degradation, environmental stress, and acid-
ity variations. Distinguishing these genes allows researchers 
to be able to study treatment options and new vaccines more 
precisely. Although many studies have been done to identify 
these genes, there are still many uncertainties about this issue. 
Therefore, further studies in this field are required in the labo-
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ratory environment and animal models to shed more light on 
the latency process.
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