DOI QR코드

DOI QR Code

Enhanced Electrochromic Performance of Viologen Ion Gel Nanofibers

비올로겐 이온겔 나노섬유의 전기변색 특성 연구

  • Choi, Jin Hui (Department of Organic Material Science and Engineering, School of Chemical Engineering, Pusan National University) ;
  • Eom, Yu Seon (Department of Organic Material Science and Engineering, School of Chemical Engineering, Pusan National University) ;
  • Park, Jong S. (Department of Organic Material Science and Engineering, School of Chemical Engineering, Pusan National University)
  • 최진희 (부산대학교 응용화학공학부 유기소재시스템공학과) ;
  • 엄유선 (부산대학교 응용화학공학부 유기소재시스템공학과) ;
  • 박종승 (부산대학교 응용화학공학부 유기소재시스템공학과)
  • Received : 2021.05.22
  • Accepted : 2021.06.20
  • Published : 2021.06.30

Abstract

Electrochromism represents a reversible spectral or optical change owing to the redox reaction on applying potential biases. Here, we present the enhanced electrochromic properties by incorporating nanofiber webs prepared by electrospinning. The electrochromic devices (ECDs) were fabricated by sandwiching the ion gel nanowebs, made up of viologen and electrolyte, between two ITO glasses. The morphology of the nanofibers was examined using a scanning electron microscope. More ionic liquid could be present between randomly arranged nanofibers, resulting in increased ionic mobility. The fabricated ECDs exhibited significantly enhanced electrochromic performances with short switching speeds, high coloration efficiency, and long-term cyclic stability. Current results demonstrate that electrospinning is a practical approach for high-performance electrochromic devices.

Keywords

Acknowledgement

이 성과는 한국연구재단의 지원을 받아 수행된 연구임(No. 2019R1A2C108866213).

References

  1. D. T. Gillaspie, R. C. Tenent, and A. C. Dillon, "Metal-oxide Films for Electrochromic Applications: Present Technology and Future Directions", J. Mater. Chem., 2010, 20, 9585-9592. https://doi.org/10.1039/c0jm00604a
  2. R. Rauh, "Electrochromic Windows: An Overview", Electrochim. Acta, 1999, 44, 3165-3176. https://doi.org/10.1016/S0013-4686(99)00034-1
  3. R. J. Mortimer, A. L. Dyer, and J. R. Reynolds, "Electrochromic Organic and Polymeric Materials for Display Applications", Displays, 2006, 27, 2-18. https://doi.org/10.1016/j.displa.2005.03.003
  4. C. G. Granqvist, "Electrochromics for Smart Windows: Oxidebased Thin Films and Devices", The Solid Films, 2014, 564, 1-38. https://doi.org/10.1016/j.tsf.2014.02.002
  5. D. R. Rosseinsky and R. J. Mortimer, "Electrochromic Systems and the Prospects for Devices", Adv. Mater., 2001, 13, 783-793. https://doi.org/10.1002/1521-4095(200106)13:11<783::AID-ADMA783>3.0.CO;2-D
  6. R. J. Mortimer, "Organic Electrochromic Materials", Electrochim. Acta, 1999, 44, 2971-2981. https://doi.org/10.1016/S0013-4686(99)00046-8
  7. K. Murugavel, "Benzylic Viologen Dendrimers: a Review of Their Synthesis, Properties and Applications", Polym. Chem., 2014, 5, 5873-5884. https://doi.org/10.1039/C4PY00718B
  8. G. Das, T. Prakasam, S. Nuryyeva, D. S. Han, A. Abdel-Wahab, J. Olsen, K. Polychronopoulou, C. Platas-Iglesias, F. Ravaux, M. Jouiad, and A. Trabolsi, "Multifunctional Redox-tuned Viologen-based Covalent Organic Polymers", J. Mater. Chem. A, 2016, 4, 15361-15369. https://doi.org/10.1039/C6TA06439F
  9. G. K. Pande, J. H. Choi, J.-E. Lee, Y. E. Kim, J. H. Choi, H. W. Choi, H. G. Chae, and J. S. Park, "Octa-viologen Substituted Polyhedral Oligomeric Silsesquioxane Exhibiting Outstanding Electrochromic Performances", Chem. Eng. J., 2020, 393, 124690. https://doi.org/10.1016/j.cej.2020.124690
  10. H. C. Moon, C. Kim, T. P. Lodge, and C. D. Frisbie, "Multicolored, Low-power, Flexible Electrochromic Devices Based on Ion Gels", ACS Appl. Mater. Interfaces, 2016, 8, 6151-6260.
  11. T. M. Benedetti, T. Carvalho, D. C. Iwakura, F. Braga, B. R. Vieira, P. Vidinha, J. Gruber, and R. M. Torresi, "All Solid-state Electrochromic Device Consisting of a Water Soluble Viologen Dissolved in Gelatin-based Ionogel", Sol. Energy Mater. Sol. Cells, 2015, 132, 101-106. https://doi.org/10.1016/j.solmat.2014.08.037
  12. P. M. S. Monk, "The Effect of Ferrocyanide on the Performance of Heptyl Viologen-based Electrochromic Display Devices", J. Electroanal. Chem., 1997, 432, 175-179. https://doi.org/10.1016/S0022-0728(97)00078-8
  13. K. Wadhwa, S. Nuryyeva, A. C. Fahrenbach, M. Elhabiri, C. Platas-Iglesias, and A. Trabolsi, "Intramolecular Redoxinduced Dimerization in a Viologen Dendrimer", J. Mater. Chem. C, 2013, 1, 2302-2307. https://doi.org/10.1039/c3tc00740e
  14. H. Lu, S. Kao, H. Yu, T. Chang, C. Kung, and K. Ho, "Achieving Low-energy Driven Viologens-based Electrochromic Devices Utilizing Polymeric Ionic Liquids", ACS Appl. Mater. Interfaces, 2016, 8, 30351-30361. https://doi.org/10.1021/acsami.6b10152
  15. J. M. C. Puguan and H. Kim, "A Switchable Single-molecule Electrochromic Device Derived from a Viologen-tethered Triazolium-based Poly(ionic liquid)", J. Mater. Chem. A, 2019, 7, 21668-21673. https://doi.org/10.1039/C9TA08302B
  16. Z. Huang, Y. Zhang, M. Kotaki, and S. Ramakrishna, "A Review on Polymer Nanofibers by Electrospinning and Their Applications in Nanocomposites", Compos. Sci. Technol., 2003, 63, 2223-2253. https://doi.org/10.1016/S0266-3538(03)00178-7
  17. J. Deitzel, J. Kleinmeyer, D. Harris, and N. Beck Tan, "The Effect of Processing Variables on the Morphology of Electrospun Nanofibers and Textiles", Polymer, 2001, 42, 261-272. https://doi.org/10.1016/S0032-3861(00)00250-0
  18. E. Jose and R. Guterman, "Designing Solutions for Electrospinning of Poly(ionic liquid)s", Macromolecules, 2019, 52, 5223-5230. https://doi.org/10.1021/acs.macromol.9b00691
  19. S. Ramakrishna, K. Fujihara, W. Teo, T. Yong, Z. Ma, and R. Ramaseshan, "Electrospun Nanofibers: Solving Global Issues", Mater. Today, 2006, 9, 40-50.
  20. T. Pickford, X. Gu, E. L. Heeley, and C. Wan, "Effects of an Ionic Liquid and Processing Conditions on the β-polymorph Crystal Formation in Poly(vinylidene fluoride)", CrystEngComm, 2019, 21, 5418-5428. https://doi.org/10.1039/C9CE01051C
  21. C. Xing, J. Guan, Y. Li, and J. Li, "Effect of a Roomtemperature Ionic Liquid on the Structure and Properties of Electrospun Poly(vinylidene fluoride) Nanofibers", ACS Appl. Mater. Interfaces, 2014, 6, 4447-4457. https://doi.org/10.1021/am500061v
  22. P. Jia, W. A. Yee, C. L. Toh, J. Ma, and X. Lu, "Thermal Stability of Ionic Liquid-loaded Electrospun Poly(vinylidene fluoride) Membranes and Its Influences on Performance of Electrochromic Devices", J. Membr. Sci., 2011, 376, 283-289. https://doi.org/10.1016/j.memsci.2011.04.040
  23. C. Dulgerbaki, N. N. Maslakci, A. I. Komur, and A. U. Oksuz, "Electrochromic Strategy for Tungsten Oxide/Polypyrrole Hybrid Nanofiber Materials", Eur. Polym. J., 2018, 107, 173-180. https://doi.org/10.1016/j.eurpolymj.2018.07.050
  24. C. Dulgerbaki, A. I. Komur, N. Nohut Maslakci, F. Kuralay, and A. Uygun Oksuz, "Synergistic Tungsten Oxide/organic Framework Hybrid Nanofibers for Electrochromic Device Application", Opt. Mater., 2017, 70, 171-179. https://doi.org/10.1016/j.optmat.2017.05.024
  25. H. Yu, S. Kao, H. Lu, Y. Lin, H. Feng, H. Pang, R. Vittal, J. Lin, and K. Ho, "Electrospun Nanofibers Composed of Poly(vinylidene fluoride-co-hexafluoropropylene) and Poly(oxyethylene)-imide Imidazolium Tetrafluoroborate as Electrolytes for Solid-state Electrochromic Devices", Sol. Energy Mater. Sol. Cells, 2018, 177, 32-43. https://doi.org/10.1016/j.solmat.2017.06.033
  26. G. K. Pande, N. H. Kim, J. H. Choi, G. Balamurugan, H. C. Moon, and J. S. Park, "Effects of Counter Ions on Electrochromic Behaviors of Asymmetrically Substituted Viologens", Sol. Energy Mater. Sol. Cells, 2019, 197, 25-31. https://doi.org/10.1016/j.solmat.2019.04.004
  27. J. B. Arockiam, H. Son, S. H. Han, G. Balamurugan, Y. H. Kim, and J. S. Park, "Iron Phthalocyanine Incorporated Metallo-supramolecular Polymer for Superior Electrochromic Performance with High Coloration Efficiency and Switching Stability", ACS Appl. Energy Mater., 2019, 2, 8416-8424. https://doi.org/10.1021/acsaem.9b01022
  28. G. Balamurugan, G. K. Pande, J. H. Choi, and J. S. Park, "Enhanced Electrochromic Properties of Terpyridine-attached Asymmetric Viologen with High Transmittance and Switching Stability", Sol. Energy Mater. Sol. Cells, 2020, 216, 110714. https://doi.org/10.1016/j.solmat.2020.110714
  29. P. Yang, P. Sun, and W. Mai, "Electrochromic Energy Storage Devices", Mater. Today, 2016, 19, 394-402. https://doi.org/10.1016/j.mattod.2015.11.007
  30. Y. Tian, W. Zhang, S. Cong, Y. Zheng, F. Geng, and Z. Zhao, "Unconventional Aluminum Ion Intercalation/Deintercalation for Fast Switching and Highly Stable Electrochromism", Adv. Funct. Mater., 2015, 25, 5833-5839. https://doi.org/10.1002/adfm.201502638
  31. Y. Alesanco, A. Vinuales, J. Palenzuela, I. Odriozola, G. Cabanero, J. Rodriguez, and R. Tena-Zaera, "Multicolor Electrochromics: Rainbow-like Devices", ACS Appl. Mater. Interfaces, 2016, 8, 14795-14801. https://doi.org/10.1021/acsami.6b01911
  32. R. Sydam, M. Deepa, S. Shivaprasad, and A. Srivastava, "A WO3-poly(butyl viologen) Layer-by-layer Film/ruthenium Purple Film Based Electrochromic Device Switching by 1 Volt Application", Sol. Energy Mater. Sol. Cells, 2015, 132, 148-161. https://doi.org/10.1016/j.solmat.2014.08.034
  33. B. Gelinas, D. Das, and D. Rochefort, "Air-stable, Self-bleaching Electrochromic Device Based on Viologen- and Ferrocene-containing Triflimide Redox Ionic Liquids", ACS Appl. Mater. Interfaces, 2017, 9, 28726-28736. https://doi.org/10.1021/acsami.7b04427