DOI QR코드

DOI QR Code

Preparation and Characterization of Single-Walled Carbon Nanotubes for Liquid Crystal Spinning via Microwave Purification

마이크로파 정제에 의한 액정방사용 단일벽 탄소나노튜브의 제조 및 특성

  • Kim, Min Ji (Department of Organic Materials & Textile Engineering, Jeonbuk National University) ;
  • Lee, Dongju (Institute of Advanced Composite Materials, Korea Institute of Science and Technology) ;
  • Ku, Bon-cheol (Institute of Advanced Composite Materials, Korea Institute of Science and Technology) ;
  • Ryu, Ki-Hyun (Institute of Advanced Composite Materials, Korea Institute of Science and Technology) ;
  • Kim, Dae-Yoon (Institute of Advanced Composite Materials, Korea Institute of Science and Technology) ;
  • Kim, Nam Dong (Institute of Advanced Composite Materials, Korea Institute of Science and Technology)
  • Received : 2021.05.11
  • Accepted : 2021.06.20
  • Published : 2021.06.30

Abstract

Carbon nanotube fibers (CNTFs) have attracted wide attention owing to their exceptional lightness, electrical conductivity, and mechanical flexibility that make them potential components for applications including carbon composites, nanoelectronics, and optics. CNTFs have been successfully fabricated from carbon nanotubes (CNTs) by liquid-crystal spinning. This spinning method requires low-defect CNTs to form a liquid crystalline phase for making highly-oriented CNTFs. In this study, we conducted microwave purification to effectively remove impurities from CNTs, such as residual metallic catalyst and carbon-based impurities, that are formed during CNT synthesis. We fabricated single-walled carbon nanotube fibers (SWCNTFs) using liquid-crystal spinning purified single-walled carbon nanotubes (SWCNTs) to examine the effect of SWCNTs on the liquid crystal phase and resultant fibers. In conclusion, this method removed impurities from SWCNTs and increased the oxygen-containing functional groups in the SWCNTs, which are capable of forming a liquid crystal phase, thereby enhancing the mechanical performance of fibers.

Keywords

References

  1. S. J. Varma, K. Sambath Kumar, S. Seal, S. Rajaraman, and J. Thomas, "Fiber-type Solar Cells, Nanogenerators, Batteries, and Supercapacitors for Wearable Applications", Adv. Sci., 2018, 5, 1800340. https://doi.org/10.1002/advs.201800340
  2. J. G. Kim, D. M. Lee, J. Y. Jung, M. J. Kim, M. S. Khil, H. S. Jeong, and N. D. Kim, "Hybrid Polyaniline/Liquid Crystalline CNT Fiber Composite for Ultimate Flexible Supercapacitors", ACS Appl. Energy Mater., 2021, 4, 1130-1142. https://doi.org/10.1021/acsaem.0c02217
  3. A. Ali, V. Baheti, J. Militky, Z. Khan, and S. Q. Z. Gilani, "Comparative Performance of Copper and Silver Coated Stretchable Fabrics", Fiber. Polym., 2018, 19, 607-619. https://doi.org/10.1007/s12221-018-7917-5
  4. S. W. Kim, S. N. Kwon, and S.-I. Na, "Stretchable and Electrically Conductive Polyurethane-silver/graphene Composite Fibers Prepared by Wet-spinning Process", Compos. Part B: Eng., 2019, 167, 573-581. https://doi.org/10.1016/j.compositesb.2019.03.035
  5. S. Lee, S. Shin, S. Lee, J. Seo, J. Lee, S. Son, H. J. Cho, H. Algadi, S. Al-Sayari, and D. E. Kim, "Ag Nanowire Reinforced Highly Stretchable Conductive Fibers for Wearable Electronics", Adv. Funct. Mater., 2015, 25, 3114-3121. https://doi.org/10.1002/adfm.201500628
  6. R. Ma, B. Kang, S. Cho, M. Choi, and S. Baik, "Extraordinarily High Conductivity of Stretchable Fibers of Polyurethane and Silver Nanoflowers", ACS Nano, 2015, 9, 10876-10886. https://doi.org/10.1021/acsnano.5b03864
  7. N. Behabtu, C. C. Young, D. E. Tsentalovich, O. Kleinerman, X. Wang, A. W. Ma, E. A. Bengio, R. F. ter Waarbeek, J. J. de Jong, and R. E. Hoogerwerf, "Strong, Light, Multifunctional Fibers of Carbon Nanotubes with Ultrahigh Conductivity", Science, 2013, 339, 182-186. https://doi.org/10.1126/science.1228061
  8. H. Choo, Y. Jung, Y. Jeong, H. C. Kim, and B. C. Ku, "Fabrication and Applications of Carbon Nanotube Fibers", Carbon Lett., 2012, 13, 191-204. https://doi.org/10.5714/CL.2012.13.4.191
  9. Y. L. Li, I. A. Kinloch, and A. H. Windle, "Direct Spinning of Carbon Nanotube Fibers from Chemical Vapor Deposition Synthesis", Science, 2004, 304, 276-278. https://doi.org/10.1126/science.1094982
  10. J. Lee, D. M. Lee, Y. Jung, J. Park, H. S. Lee, Y. K. Kim, C. R. Park, H. S. Jeong, and S. M. Kim, "Direct Spinning and Densification Method for High-performance Carbon Nanotube Fibers", Nat. Commun., 2019, 10, 1-10. https://doi.org/10.1038/s41467-018-07882-8
  11. B. Vigolo, A. Penicaud, C. Coulon, C. Sauder, R. Pailler, C. Journet, P. Bernier, and P. Poulin, "Macroscopic Fibers and Ribbons of Oriented Carbon Nanotubes", Science, 2000, 290, 1331-1334. https://doi.org/10.1126/science.290.5495.1331
  12. S. Zhang, K. K. Koziol, I. A. Kinloch, and A. H. Windle, "Macroscopic Fibers of Well-aligned Carbon Nanotubes by Wet Spinning", Small, 2008, 4, 1217-1222. https://doi.org/10.1002/smll.200700998
  13. V. A. Davis, L. M. Ericson, A. N. G. Parra-Vasquez, H. Fan, Y. Wang, V. Prieto, J. A. Longoria, S. Ramesh, R. K. Saini, C. Kittrell, W. E. Billups, W. W. Adams, R. H. Hauge, R. E. Smalley, and M. Pasquali, "Phase Behavior and Rheology of SWNTs in Superacids", Macromolecules, 2004, 37, 154-160. https://doi.org/10.1021/ma0352328
  14. M. J. Green, A. N. G. Parra-Vasquez, N. Behabtu, M. Pasquali, "Modeling the Phase Behavior of Polydisperse Rigid Rods with Attractive Interactions with Applications to Single-walled Carbon Nanotubes in Superacids", J. Chem. Phys., 2009, 131, 084901. https://doi.org/10.1063/1.3204024
  15. H. Lee, D. M. Lee, C. H. Lee, J. Lee, and K. H. Lee, "Determining the Isotropic Cloud Point of Carbon Nanotube/Chlorosulfonic Acid Solution Using UV-vis-nIR Absorbance Saturation Behavior", Carbon, 2021, 173, 782-791. https://doi.org/10.1016/j.carbon.2020.11.058
  16. D. E. Tsentalovich, R. J. Headrick, F. Mirri, J. Hao, N. Behabtu, C. C. Young, and M. Pasquali, "Influence of Carbon Nanotube Characteristics on Macroscopic Fiber Properties", ACS Appl. Mater. Interfaces, 2017, 9, 36189-36198. https://doi.org/10.1021/acsami.7b10968
  17. V. A. Davis, A. N. G. Parra-Vasquez, M. J. Green, P. K. Rai, N. Behabtu, V. Prieto, R. D. Booker, J. Schmidt, E. Kesselman, and W. Zhou, "True Solutions of Single-walled Carbon Nanotubes for Assembly into Macroscopic Materials", Nat. Nanotechnol., 2009, 4, 830-834. https://doi.org/10.1038/nnano.2009.302
  18. J. Lee, D. M. Lee, Y. K. Kim, H. S. Jeong, and S. M. Kim, "Significantly Increased Solubility of Carbon Nanotubes in Superacid by Oxidation and Their Assembly into High-Performance Fibers", Small, 2017, 13, 1701131. https://doi.org/10.1002/smll.201701131
  19. A. Ismail, P. S. Goh, J. C. Tee, S. M. Sanip, and M. Aziz, "A Review of Purification Techniques for Carbon Nanotubes", Nano, 2008, 3, 127-143. https://doi.org/10.1142/S1793292008000927
  20. Y. Li, X. Zhang, J. Luo, W. Huang, J. Cheng, Z. Luo, T. Li, F. Liu, G. Xu, and X. Ke, "Purification of CVD Synthesized Singlewall Carbon Nanotubes by Different Acid Oxidation Treatments", Nanotechnology, 2004, 15, 1645-1649. https://doi.org/10.1088/0957-4484/15/11/047
  21. K. MacKenzie, O. Dunens, and A. T. Harris, "A Review of Carbon Nanotube Purification by Microwave Assisted Acid Digestion", Sep. Purif. Technol., 2009, 66, 209-222. https://doi.org/10.1016/j.seppur.2009.01.017
  22. Y. Wang, H. Shan, R. H. Hauge, M. Pasquali, and R. E. Smalley, "A Highly Selective, One-pot Purification Method for Single-walled Carbon Nanotubes", J. Phys. Chem. B, 2007, 111, 1249-1252. https://doi.org/10.1021/jp068229+
  23. Y. Liu, N. Wu, Z. Wang, H. Cao, and J. Liu, "Fe3O4 Nanoparticles Encapsulated in Multi-walled Carbon Nanotubes Possess Superior Lithium Storage Capability", New J. Chem., 2017, 41, 6241-6250. https://doi.org/10.1039/C7NJ00230K
  24. A. W. Musumeci, G. G. Silva, W. N. Martens, E. R. Waclawik, and R. L. Frost, "Thermal Decomposition and Electron Microscopy Studies of Single-walled Carbon Nanotubes", J. Thermal Analysis and Calorimetry, 2007, 88, 885-891. https://doi.org/10.1007/s10973-006-7563-9
  25. Z. Shi, Y. Lian, F. Liao, X. Zhou, Z. Gu, Y. Zhang, and S. Iijima, "Purification of Single-wall Carbon Nanotubes", Solid State Commun., 1999, 112, 35-37. https://doi.org/10.1016/S0038-1098(99)00278-1
  26. V. Datsyuk, M. Kalyva, K. Papagelis, J. Parthenios, D. Tasis, A. Siokou, I. Kallitsis, and C. Galiotis, "Chemical Oxidation of Multiwalled Carbon Nanotubes", Carbon, 2008, 46, 833-840. https://doi.org/10.1016/j.carbon.2008.02.012
  27. M. A. Turgunov, J. O. Oh, and S. H. Yoon, "Surface Modification of Multiwall Carbon Nanotubes by Sulfuric Acid and Nitric Acid", Materials, 2014, 64, 22-25.