DOI QR코드

DOI QR Code

Characterization of a PVA Treated Sea-island Type Nylon Microfiber Nonwoven Leatherette

PVA 처리에 따른 해도형 나일론 극세사 부직포 인조피혁의 특성 분석

  • Nam, Taek Uk (Department of Applied Organic Materials Engineering, Chungnam National University) ;
  • Lee, Pil Gyu (Department of Applied Organic Materials Engineering, Chungnam National University) ;
  • Lee, Jaemin (Department of Applied Organic Materials Engineering, Chungnam National University) ;
  • Lee, Yu Rim (Korea Textile Smart Processing Institute) ;
  • Lee, Seung Goo (Department of Applied Organic Materials Engineering, Chungnam National University)
  • 남택욱 (충남대학교 유기응용재료공학과) ;
  • 이필규 (충남대학교 유기응용재료공학과) ;
  • 이재민 (충남대학교 유기응용재료공학과) ;
  • 이유림 (한국섬유스마트공정연구원) ;
  • 이승구 (충남대학교 유기응용재료공학과)
  • Received : 2021.05.29
  • Accepted : 2021.06.22
  • Published : 2021.06.30

Abstract

In this study, a leatherette was manufactured using sea-island type nonwoven nylon microfiber. To increase the flexibility of the leatherette, the nonwoven fabric was preimpregnated in a polyvinyl alcohol (PVA) solution. The PVA-impregnated nonwoven seaisland type nylon microfiber was treated with a polyurethane (PU) solution and then the elution process was performed to remove PVA and co-PET using a NaOH solution. The morphologies of the nonwoven fabrics before and after elution of PVA and co-PET were observed by scanning electron microscopy (SEM). The pliability of the nonwoven fabric was evaluated using flexibility and stiffness tests before and after each treatment. The leatherette with the PVA-treated nonwoven fabric showed more pores and gaps in its morphologies and higher flexibility in the stiffness test. Finally, mechanical properties were analyzed based on tensile properties and dynamic modulus.

Keywords

Acknowledgement

이 연구는 충남대학교 학술연구비에 의해 지원되었음.

References

  1. I. S. Park, "Manufacture of Artificial Leather(1)", Toplon Fiber, No.11, HyoSung T&C, 1994, pp.14-17.
  2. I. S. Park,, "Manufacture of Artificial Leather(2)", Toplon Fiber, No.12, HyoSung T&C, 1994, pp.12-15.
  3. J. S. Lee and H. W. Shin, "The Sense of Touch of Man-made Leather", J. Korean Soc. Cloth. Text., 2000, 24, 277-285.
  4. J. Koh, "Weight Reduction and Dyeing Properties of SeaIsland Type PET Supermicrofiber Fabrics", Text. Sci. Eng., 2005, 42, 355-362.
  5. Y. K. Park, A. R. Jo, and J. J. Lee, "Weight Reduction and Dyeing Properties of Sea-island Type Polyethylene Terephthalate Ultramicrofiber Fabric", Text. Sci. Eng., 2015, 52, 344-352. https://doi.org/10.12772/TSE.2015.52.344
  6. O. Wada, "Control of Fiber Form and Yarn and Fabric Structure", J. Text. Inst., 1992, 83, 322-347. https://doi.org/10.1080/00405009208631207
  7. S. J. Dho and D. H. Baik, "Nanofilament Manufacture Technique", Fiber Technol. Ind., 2010, 14, 47-54.
  8. S. D. Kim, K. S. Lee, B. S. Lee, C. H. Ahn, and K. S. Kim, "Dyeing Properties and Improvement of Washfastness of Ultrafine Polyester", Text. Color. Finish., 2003, 15, 48-55.
  9. J. M. Kang, M. G. Kim, J. E. Lee, J. W. Ko, I. J. Kim, J. Y. Lee, D. J. Lee, S. I. Ko, D. H. Jung, and S. G. Lee, "Weight Reduction and Dyeing Characteristics of Sea-Island Type Ultramicrofiber PET Tricot Fabric with Black Color", The Korean Society of Dyers and Finishers, 2020, 32, 9-18.
  10. M. Y. Seo, J. H. Lee, C. M. Ok, S. H. Cho, J. W. Lee, and H. H. Cho, "A Study on the Alkali Hydrolysis of Sea-island PET Ultra-microfiber", Text. Color. Finish., 2013, 25, 303-313. https://doi.org/10.5764/TCF.2013.25.4.303
  11. H. I. Kim, C. H. Jeong, and M. H. Min, "Accelerating Effect of Organic Acid Treatment on Weight Reduction Characteristics of Sea-Island Type PET Supermicrofiber (1)", Text. Color. Finish., 2012, 24, 45-53. https://doi.org/10.5764/TCF.2012.24.1.45
  12. J. M. Park, D. S. Jeong, H. K. Rho, and M. C. Lee, "Alkalin Weight Reduction and Physical Properties of 0.01 Polyester Ultramicro Fiber", Text. Color. Finish., 2006, 18, 37-42.