Acknowledgement
This study was supported by AQUATIV (Aquaculture Division of DIANA, Member of SYMRISE Group), Elven, France and Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2019R1A6A1A03033553).
References
- Anderson DP, Siwicki AK. Basic hematology and serology for fish health programs. In: Shariff M, Arthur JR, Subasinghe RP, editors. Diseases in Asian aquaculture II. Selangor, Malaysia: Fish Health Section, Asian Fisheries Society; 1995. p. 185-202.
- AOAC [Association of Official Analytical Chemists] International. Official methods of analysis of AOAC International. 18th ed. Gaithersburg, MD: AOAC International; 2005.
- Biswas AK, Seoka M, Inoue Y, Takii K, Kumai H. Photoperiod influences the growth, food intake, feed efficiency and digestibility of red sea bream (Pagrus major). Aquaculture. 2005;250:666-73. https://doi.org/10.1016/j.aquaculture.2005.04.047
- Biswas AK, Seoka M, Takii K, Kumai H. Comparison of apparent digestibility coefficient among replicates and different stocking density in red sea bream Pagrus major. Fish Sci. 2007;73:19-26. https://doi.org/10.1111/j.1444-2906.2007.01297.x
- Bjorndal B, Vik R, Brattelid T, Vigerust NF, Burri L, Bohov P, et al. Krill powder increases liver lipid catabolism and reduces glucose mobilization in tumor necrosis factor-alpha transgenic mice fed a high-fat diet. Metabolism. 2012;61:1461-72. https://doi.org/10.1016/j.metabol.2012.03.012
- Brown BA. Routine hematology procedures. In: Brown BA, editor. Hematology, principles and procedures. Philadelphia, PA: Leo and Febiger; 1980. p. 71-112.
- Bueno-Solano C, Lopez-Cervantes J, Campas-Baypoli ON, Lauterio-Garcia R, Adan-Bante NP, Sanchez-Machado DI. Chemical and biological characteristics of protein hydrolysates from fermented shrimp by-products. Food Chem. 2009;112:671-75. https://doi.org/10.1016/j.foodchem.2008.06.029
- Bui HTD, Khosravi S, Fournier V, Herault M, Lee KJ. Growth performance, feed utilization, innate immunity, digestibility and disease resistance of juvenile red seabream (Pagrus major) fed diets supplemented with protein hydrolysates. Aquaculture. 2014;418-419:11-16. https://doi.org/10.1016/j.aquaculture.2013.09.046
- Cahu TB, Santos SD, Mendes A, Cordula CR, Chavante SF, Carvalho LB, et al. Recovery of protein, chitin, carotenoids and glycosaminoglycans from Pacific white shrimp (Litopenaeus vannamei) processing waste. Process Biochem. 2012;47:570-77. https://doi.org/10.1016/j.procbio.2011.12.012
- Cederlund A, Gudmundsson GH, Agerberth B. Antimicrobial peptides important in innate immunity. FEBS J. 2011;278:3942-51 https://doi.org/10.1111/j.1742-4658.2011.08302.x
- Chalamaiah M, Dinesh Kumar B, Hemalatha R, Jyothirmayi T. Fish protein hydrolysates: proximate composition, amino acid composition, antioxidant activities and applications: a review. Food Chem. 2012;135:3020-38. https://doi.org/10.1016/j.foodchem.2012.06.100
- Chalamaiah M, Hemalatha R, Jyothirmayi T, Diwan PV, Bhaskarachary K, Vajreswari A, et al. Chemical composition and immunomodulatory effects of enzymatic protein hydrolysates from common carp (Cyprinus carpio) egg. Nutrition. 2015;31:388-98. https://doi.org/10.1016/j.nut.2014.08.006
- Chalamaiah M, Yu W, Wu J. Immunomodulatory and anticancer protein hydrolysates (peptides) from food proteins: a review. Food Chem. 2018;245:205-22. https://doi.org/10.1016/j.foodchem.2017.10.087
- Cheng CH, Guo ZX, Ye CX, Wang AL. Effect of dietary astaxanthin on the growth performance, non-specific immunity, and antioxidant capacity of pufferfish (Takifugu obscurus) under high temperature stress. Fish Physiol. Biochem. 2018;44:209-18. https://doi.org/10.1007/s10695-017-0425-5
- Chiou PP, Khoo J, Bols NC, Douglas S, Chen TT. Effects of linear cationic α-helical antimicrobial peptides on immune-relevant genes in trout macrophages. Dev Comp Immunol. 2006;30:797-806. https://doi.org/10.1016/j.dci.2005.10.011
- Cho JH, Haga Y, Masuda R, Satoh S. Periodic changes in the growth performance and biochemical composition of juvenile red sea bream Pagrus major fed non-heated and heated squid and krill meal-based diets. Fish Sci. 2018;84:699-713. https://doi.org/10.1007/s12562-018-1205-6
- de Cruz CR, Yamamoto FY, Ju M, Chen K, Velasquez A, Gatlin DM. Efficacy of purified nucleotide supplements on the growth performance and immunity of hybrid striped bass Morone chrysops × Morone saxatilis. Fish Shellfish Immunol. 2020;98:868-74. https://doi.org/10.1016/j.fsi.2019.11.046
- Divakaran S, Obaldo LG, Forster IP. Note on the methods for determination of chromic oxide in shrimp feeds. J Agric Food Chem. 2002;50:464-67. https://doi.org/10.1021/jf011112s
- Dong S, Zeng M, Wang D, Liu Z, Zhao Y, Yang H. Antioxidant and biochemical properties of protein hydrolysates prepared from Silver carp (Hypophthalmichthys molitrix). Food Chem. 2008;107:1485-93. https://doi.org/10.1016/j.foodchem.2007.10.011
- Dossou S, Koshio S, Ishikawa M, Yokoyama S, Dawood MAO, El Basuini MF, et al. Growth performance, blood health, antioxidant status and immune response in red sea bream (Pagrus major) fed Aspergillus oryzae fermented rapeseed meal (RM-Koji). Fish Shellfish Immunol. 2018;75:253-62. https://doi.org/10.1016/j.fsi.2018.01.032
- Escobar S, Fuentes EN, Poblete E, Valdes JA, Safian D, Reyes AE, et al. Molecular cloning of IGF-1 and IGF-1 receptor and their expression pattern in the Chilean flounder (Paralichthys adspersus). Comp Biochem Physiol B Biochem Mol Biol. 2011;159:140-147. https://doi.org/10.1016/j.cbpb.2011.03.003
- Folch J, Lees M, Sloane Stanley GH. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957;226:497-509. https://doi.org/10.1016/S0021-9258(18)64849-5
- Gaber MMA. The effect of different levels of krill meal supplementation of soybean-based diets on feed intake, digestibility, and chemical composition of Juvenile Nile tilapia Oreochromis niloticus, L. J World Aquac Soc. 2007;36:346-53. https://doi.org/10.1111/j.1749-7345.2005.tb00338.x
- Goto T, Takagi S, Ichiki T, Sakai T, Endo M, Yoshida T, et al. Studies on the green liver in cultured red sea bream fed low level and non-fish meal diets: relationship between hepatic taurine and biliverdin levels. Fish Sci. 2001;67:58-63. https://doi.org/10.1046/j.1444-2906.2001.00199.x
- Gunathilaka BE, Khosravi S, Herault M, Fournier V, Lee C, Jeong JB. Evaluation of shrimp or tilapia protein hydrolysate at graded dosages in low fish meal diet for olive flounder (Paralichthys olivaceus). Aquac Nutr. 2020;26:1592-603. https://doi.org/10.1111/anu.13105
- Haghbayan S, Shamsaie Mehrgan M. The effect of replacing fish meal in the diet with enzyme-treated soybean meal (HP310) on growth and body composition of rainbow trout fry. Molecules. 2015;20:21058-66. https://doi.org/10.3390/molecules201219751
- Hansen JO, Penn M, Overland M, Shearer KD, Krogdahl A, Mydland LT, et al. High inclusion of partially deshelled and whole krill meals in diets for Atlantic salmon (Salmo salar). Aquaculture. 2010;310:164-72. https://doi.org/10.1016/j.aquaculture.2010.10.003
- Hardy RW. Alternative marine sources of fish feed and farmed fish quality. In: Lie O, editor. Improving farmed fish quality and safety. Cambridge, MA: Woodhead; 2008. p. 328-42.
- Harris J, Bird DJ. Modulation of the fish immune system by hormones. Vet Immunol Immunopathol. 2000;77:163-76. https://doi.org/10.1016/S0165-2427(00)00235-X
- Hatlen B, Berge K, Nordrum S, Johnsen K, Kolstad K, Morkore T. The effect of low inclusion levels of Antarctic krill (Euphausia superba) meal on growth performance, apparent digestibility and slaughter quality of Atlantic salmon (Salmo salar). Aquac Nutr. 2017;23:721-9. https://doi.org/10.1111/anu.12439
- Hermannsdottir R, Johannsdottir J, Smaradottir H, Sigurgisladottir S, Gudmundsdottir BK, Bjornsdottir R. Analysis of effects induced by a pollock protein hydrolysate on early development, innate immunity and the bacterial community structure of first feeding of Atlantic halibut (Hippoglossus hippoglossus L.) larvae. Fish Shellfish Immunol. 2009;27:595-602. https://doi.org/10.1016/j.fsi.2009.05.007
- Heu MS, Kim JS, Shahidi F. Components and nutritional quality of shrimp processing by-products. Food Chem. 2003;82:235-42. https://doi.org/10.1016/S0308-8146(02)00519-8
- Hossain MS, Koshio S, Ishikawa M, Yokoyama S, Sony NM, Dawood MAO. Efficacy of nucleotide related products on growth, blood chemistry, oxidative stress and growth factor gene expression of juvenile red sea bream, Pagrus major. Aquaculture. 2016;464:8-16. https://doi.org/10.1016/j.aquaculture.2016.06.004
- Huang D, Yang L, Wang C, Ma S, Cui L, Huang S, et al. Immunostimulatory activity of protein hydrolysate from oviductus ranae on macrophage in vitro. Evid-Based Complement Alternat Med. 2014;1-11.
- Huang GR, Zhao J, Jiang JX. Effect of defatting and enzyme type on antioxidative activity of shrimp processing byproducts hydrolysate. Food Sci Biotechnol. 2011;20:651-7. https://doi.org/10.1007/s10068-011-0092-8
- Kader MA, Bulbul M, Koshio S, Ishikawa M, Yokoyama S, Nguyen BT, et al. Effect of complete replacement of fishmeal by dehulled soybean meal with crude attractants supplementation in diets for red sea bream, Pagrus major. Aquaculture. 2012;350:109-16. https://doi.org/10.1016/j.aquaculture.2012.04.009
- Kader MA, Koshio S. Effect of composite mixture of seafood by-products and soybean proteins in replacement of fishmeal on the performance of red sea bream, Pagrus major. Aquaculture. 2012;368:95-102. https://doi.org/10.1016/j.aquaculture.2012.09.014
- Kader MA, Koshio S, Ishikawa M, Yokoyama S, Bulbul M. Supplemental effects of some crude ingredients in improving nutritive values of low fishmeal diets for red sea bream, Pagrus major. Aquaculture. 2010;308:136-44. https://doi.org/10.1016/j.aquaculture.2010.07.037
- Kalinowski CT, Robaina LE, Izquierdo MS. Effect of dietary astaxanthin on the growth performance, lipid composition and post-mortem skin colouration of red porgy Pagrus pagrus. Aquac Int. 2011;19:811-23. https://doi.org/10.1007/s10499-010-9401-0
- Karnjanapratum S, O'Callaghan YC, Benjakul S, O'Brien N. Antioxidant, immunomodulatory and antiproliferative effects of gelatin hydrolysate from unicorn leatherjacket skin. J Sci Food Agric. 2016;96:3220-6. https://doi.org/10.1002/jsfa.7504
- Khosravi S, Bui HTD, Herault M, Fournier V, Kim KD, Lee BJ, et al. Supplementation of protein hydrolysates to a low-fishmeal diet improves growth and health status of juvenile olive flounder, Paralichthys olivaceus. J World Aquac Soc. 2018;49:897-911. https://doi.org/10.1111/jwas.12436
- Khosravi S, Bui HTD, Rahimnejad S, Herault M, Fournier V, Jeong JB. Effect of dietary hydrolysate supplementation on growth performance, non-specific immune response and disease resistance of olive flounder (Paralichthys olivaceus) challenged with Edwardsiella tarda. Aquac Nutr. 2015b;21:321-31. https://doi.org/10.1111/anu.12157
- Khosravi S, Rahimnejad S, Herault M, Fournier V, Lee CR, Bui HTD, et al. Effects of protein hydrolysates supplementation in low fish meal diets on growth performance, innate immunity and disease resistance of red sea bream Pagrus major. Fish Shellfish Immunol. 2015a;45:858-68. https://doi.org/10.1016/j.fsi.2015.05.039
- Kim DH, Lipton D, Choi JY. Analyzing the economic performance of the red sea bream Pagrus major offshore aquaculture production system in Korea. Fish Sci. 2012;78:1337-42. https://doi.org/10.1007/s12562-012-0540-2
- Kleekayai T, Harnedy PA, O'Keeffe MB, Poyarkov AA, CunhaNeves A, Suntornsuk W. Extraction of antioxidant and ACE inhibitory peptides from Thai traditional fermented shrimp pastes. Food Chem. 2015;176:441-7. https://doi.org/10.1016/j.foodchem.2014.12.026
- Kondo F, Ohta T, Iwai T, Ido A, Miura C, Miura T. Effect of the squid viscera hydrolysate on growth performance and digestion in the red sea bream Pagrus major. Fish Physiol Biochem. 2017;43:1543-55. https://doi.org/10.1007/s10695-017-0391-y
- Koshio S. Red sea bream, Pagrus major. In: Webster CD, Lim CE, editors. Nutrient requirements and feeding of finfish for aquaculture. New York, NY: CABI; 2002. p. 51-63.
- KOSTAT [Statistics Korea]. Preliminary results of the survey on the status of fish culture in 2016 [Internet]. 2017 [cited 2020 Mar 26]. http://kostat.go.kr/assist/synap/preview/skin/doc.html?fn=synapview360318_1&rs=/assist/synap/preview
- Laron Z. Insulin-like growth factor 1 (IGF-1): a growth hormone. J Clin Pathol Mol Pathol. 2001;54:311-6. https://doi.org/10.1136/mp.54.5.311
- Leal ALG, de Castro PF, de Lima JPV, de Souza Correia E, de Souza Bezerra R. Use of shrimp protein hydrolysate in Nile tilapia (Oreochromis niloticus, L.) feeds. Aquac Int. 2010;18:635-46. https://doi.org/10.1007/s10499-009-9284-0
- Leduc A, Zatylny-Gaudin C, Robert M, Corre E, Corguille GL, Castel H, et al. Dietary aquaculture by-product hydrolysates: impact on the transcriptomic response of the intestinal mucosa of European seabass (Dicentrarchus labrax) fed low fish meal diets. BMC Genomics. 2018;19: 396. https://doi.org/10.1186/s12864-018-4780-0
- Li F, Huang S, Lu X, Wang J, Lin M, An Y. Effects of dietary supplementation with algal astaxanthin on growth, pigmentation, and antioxidant capacity of the blood parrot (Cichlasoma citrinellum × Cichlasoma synspilum ). J Oceanol Limnol. 2018;36:1851-9. https://doi.org/10.1007/s00343-019-7172-7
- Li M, Wu W, Zhou P, Xie F, Zhou Q, Mai K. Comparison effect of dietary astaxanthin and Haematococcus pluvialis on growth performance, antioxidant status and immune response of large yellow croaker Pseudosciaena crocea. Aquaculture. 2014;434:227-32. https://doi.org/10.1016/j.aquaculture.2014.08.022
- Liang M, Wang J, Chang Q, Mai K. Effects of different levels of fish protein hydrolysate in the diet on the nonspecific immunity of Japanese sea bass, Lateolabrax japonicus (Cuvieret Valenciennes, 1828). Aquac Res. 2006;37:102-6. https://doi.org/10.1111/j.1365-2109.2005.01392.x
- Lim KC, Yusoff FM, Shariff M, Kamarudin MS. Astaxanthin as feed supplement in aquatic animals. Rev Aquac. 2018;10:738-73. https://doi.org/10.1111/raq.12200
- Lopez-Cervantes J, Sanchez-Machado DI, Rios-Vazquez NJ. High-performance liquid chromatography method for the simultaneous quantification of retinol, α-tocopherol, and cholesterol in shrimp waste hydrolysate. J Chromatogr A. 2006;1105:135-9. https://doi.org/10.1016/j.chroma.2005.08.010
- Machado M, Azeredo R, Diaz-Rosales P, Afonso A, Peres H, Oliva-Teles A. Dietary tryptophan and methionine as modulators of European seabass (Dicentrarchus labrax) immune status and inflammatory response. Fish Shellfish Immunol. 2015;42:353-62. https://doi.org/10.1016/j.fsi.2014.11.024
- Magnadottir B. Innate immunity of fish (overview). Fish Shellfish Immunol. 2006;20:137-51. https://doi.org/10.1016/j.fsi.2004.09.006
- McCormick SD. Effects of growth hormone and insulin-like growth factor I on salinity tolerance and gill Na+, K+-ATPase in Atlantic salmon (Salmo salar): interaction with cortisol. Gen Comp Endocrinol. 1996;101:3-11. https://doi.org/10.1006/gcen.1996.0002
- Merimee TJ, Laron Z. Growth hormone, IGF-I and growth: new views of old concepts. London, UK: Freund; 1996.
- Meton I, Caseras A, Canto E, Fernandez F, Baanante IV. Liver insulin-like growth factor-I mRNA is not affected by diet composition or ration size but shows diurnal variations in regularly-fed gilthead sea bream (Sparus aurata). J Nutr. 2000;130:757-60. https://doi.org/10.1093/jn/130.4.757
- Meyers SP. Utilization of shrimp processing wastes. Infofish Mark Dig. 1986;4:18-9.
- Moriyama S, Ayson FG, Kawauchi H. Growth regulation by insulin-like growth factor-I in fish. Biosci Biotechnol Biochem. 2000;64:1553-62. https://doi.org/10.1271/bbb.64.1553
- Nii Y, Fukuta K, Yoshimoto R, Sakai K, Ogawa T. Determination of antihypertensive peptides from an izumi shrimp hydrolysate. Biosci Biotechnol Biochem. 2008;72:861-4. https://doi.org/10.1271/bbb.70565
- Nwanna LC. Nutritional value and digestibility of fermented shrimp head waste meal by african catfish Clarias gariepinus. Pakistan J Nutr. 2003;2:339-45. https://doi.org/10.3923/pjn.2003.339.345
- Olsen RE, Suontama J, Langmyhr E, Mundheim H, Ringo E, Melle W, et al. The replacement of fish meal with Antarctic krill, Euphausia superba in diets for Atlantic salmon, Salmo salar. Aquac Nutr. 2006;12:280-90. https://doi.org/10.1111/j.1365-2095.2006.00400.x
- Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29:e45. https://doi.org/10.1093/nar/29.9.e45
- Plascencia-Jatomea M, Olvera-Novoa MA, Arredondo-Figueroa JL, Hall GM, Shirai K. Feasibility of fishmeal replacement by shrimp head silage protein hydrolysate in Nile tilapia (Oreochromis niloticus L) diets. J Sci Food Agric. 2002;82:753-9. https://doi.org/10.1002/jsfa.1092
- Pohlenz C, Buentello A, Criscitiello MF, Mwangi W, Smith R, Gatlin III DM. Synergies between vaccination and dietary arginine and glutamine supplementation improve the immune response of channel catfish against Edwardsiella ictaluri. Fish Shellfish Immunol. 2012;33:543-51. https://doi.org/10.1016/j.fsi.2012.06.005
- Quade MJ, Roth JA. A rapid, direct assay to measure degranulation of bovine neutrophil primary granules. Vet Immunol Immunopathol. 1997;58:239-48. https://doi.org/10.1016/S0165-2427(97)00048-2
- Rajanbabu V, Chen JY. Applications of antimicrobial peptides from fish and perspectives for the future. Peptides. 2011;32:415-20. https://doi.org/10.1016/j.peptides.2010.11.005
- Ringo E, Zhou Z, Olsen RE, Song SK. Use of chitin and krill in aquaculture - the effect on gut microbiota and the immune system: a review. Aquac Nutr. 2012;18:117-31. https://doi.org/10.1111/j.1365-2095.2011.00919.x
- Rosenlund G, Torstensen BE, Stubhaug I, Usman N, Sissener NH. Atlantic salmon require long-chain n-3 fatty acids for optimal growth throughout the seawater period. J Nutr Sci. 2016 ;5:e19. https://doi.org/10.1017/jns.2016.10
- Saleh R, Burri L, Benitez-Santana T, Turkmen S, Castro P, Izquierdo M. Dietary krill meal inclusion contributes to better growth performance of gilthead seabream juveniles. Aquac Res. 2018;49:3289-95. https://doi.org/10.1111/are.13792
- Shahidi F, Synowiecki J. Isolation and characterization of nutrients and value-added products from snow crab (Chinoecetes opilio) and shrimp (Pandalus borealis) processing discards. J Agric Food Chem. 1991;39:1527-32. https://doi.org/10.1021/jf00008a032
- Shamblott MJ, Cheng CM, Bolt D, Chen TT. Appearance of insulin-like growth factor mRNA in the liver and pyloric ceca of a teleost in response to exogenous growth hormone. Proc Natl Acad Sci USA. 1995;92:6943-6. https://doi.org/10.1073/pnas.92.15.6943
- Shimizu C, Ibrahim A, Tokoro T, Shirakawa Y. Feeding stimulation in sea bream, Pagrus major, fed diets supplemented with Antarctic krill meals. Aquaculture. 1990;89:43-53. https://doi.org/10.1016/0044-8486(90)90232-C
- Siddik MAB, Howieson J, Fotedar R. Beneficial effects of tuna hydrolysate in poultry by-product meal diets on growth, immune response, intestinal health and disease resistance to Vibrio harveyi in juvenile barramundi, Lates calcarifer. Fish Shellfish Immunol. 2019;89:61-70. https://doi.org/10.1016/j.fsi.2019.03.042
- Silva-Carrillo Y, Hernandez C, Hardy RW, Gonzalez-Rodriguez B, Castillo-Vargasmachuca S. The effect of substituting fish meal with soybean meal on growth, feed efficiency, body composition and blood chemistry in juvenile spotted rose snapper Lutjanus guttatus (Steindachner, 1869). Aquaculture. 2012;364:180-5. https://doi.org/10.1016/j.aquaculture.2012.08.007
- Takagi S, Shimeno S, Hosokawa H, Ukawa M. Effect of lysine and methionine supplementation to a soy protein concentrate diet for red sea bream Pagrus major. Fish Sci. 2001;67:1088-96. https://doi.org/10.1046/j.1444-2906.2001.00365.x
- Takii K, Konishi K, Ukawa M, Nakamura M, Kumai H. Influence of feeding rates on digestion and energy flow in tiger puffer and red sea bream. Fish Sci. 1997;63:355-60. https://doi.org/10.2331/fishsci.63.355
- Teshima SI, Koshio S, Ishikawa M, Alam MS, Hernandez LHH. Effects of protein and lipid sources on the growth and survival of red sea bream Pagrus major and Japanese flounder Paralichthys olivaceus receiving micro-bound diets during larval and early juvenile stage. Aquac Nutr. 2004;10:279-87. https://doi.org/10.1111/j.1365-2095.2004.00303.x
- Tharaka K, Benitez-Santana T, Gunathilaka BE, Kim MG, Lee C, Shin J, et al. Evaluation of Antarctic krill (Euphausia superba) meal supplementation in diets for olive flounder (Paralichthys olivaceus ). Aquac Res. 2020;51:2291-302. https://doi.org/10.1111/are.14573
- Tibbetts SM, Milley JE, Lall SP. Apparent protein and energy digestibility of common and alternative feed ingredients by Atlantic cod, Gadus morhua (Linnaeus, 1758). Aquaculture. 2006;261:1314-27. https://doi.org/10.1016/j.aquaculture.2006.08.052
- Tilseth S, Hostmark O. New method for making krill meal. United States patent US20090061067. 2009 Mar 5.
- Valero Y, Saraiva-Fraga M, Costas B, Guardiola FA. Antimicrobial peptides from fish: beyond the fight against pathogens. Rev Aquac. 2020;12:224-53. https://doi.org/10.1111/raq.12314
- Wei Y, Shen H, Xu W, Pan Y, Chen J, Zhang W, Mai K. Replacement of dietary fishmeal by Antarctic krill meal on growth performance, intestinal morphology, body composition and organoleptic quality of large yellow croaker Larimichthys crocea. Aquaculture 2019;512:734281. https://doi.org/10.1016/j.aquaculture.2019.734281
- Xie D, Gong M, Wei W, Jin J, Wang X, Wang X. Antarctic krill (Euphausia superba) oil: a comprehensive review of chemical composition, extraction technologies, health benefits, andApplications. Compr Rev Food Sci Food Saf. 2019;18:514-34. https://doi.org/10.1111/1541-4337.12427
- Xie JJ, Chen X, Liu YJ, Tian LX, Xie SW, Niu J. Effects of dietary astaxanthin on growth performance, hepatic antioxidative activity, hsp70, and HIF-1α gene expression of juvenile golden pompano (Trachinotus ovatus). Isr J Aquac. Bamidgeh. 2017;69:12.
- Yamamoto T, Akimoto A, Kishi S, Unuma T, Akiyama T. Apparent and true availabilities of amino acids from several protein sources for fingerling rainbow trout, common carp, and red sea bream. Fish Sci. 1998;64:448-58. https://doi.org/10.2331/fishsci.64.448
- Yan J, Chang Q, Chen S, Wang Z, Lu B, Liu C. Effect of dietary antarctic krill meal on growth performance, muscle proximate composition, and antioxidative capacity of juvenile spotted halibut, Verasper variegatus. J World Aquac Soc. 2018;49:761-69. https://doi.org/10.1111/jwas.12455
- Yoshitomi B, Aoki M, Oshima SI, Hata K. Evaluation of krill (Euphausia superba) meal as a partial replacement for fish meal in rainbow trout (Oncorhynchus mykiss) diets. Aquaculture. 2006;261:440-6. https://doi.org/10.1016/j.aquaculture.2006.06.036
- Zheng K, Liang M, Yao H, Wang J, Chang Q. Effect of dietary fish protein hydrolysate on growth, feed utilization and IGF-I levels of Japanese flounder (Paralichthys olivaceus). Aquac Nutr. 2012;18:297-303. https://doi.org/10.1111/j.1365-2095.2011.00896.x