DOI QR코드

DOI QR Code

Molecular Phylogeny Reconstruction of Grouper (Serranidae: Epinephelinae) at Northern Part of Bird's Head Seascape - Papua Inferred from COI Gene

  • Tapilatu, Ricardo F. (Marine Science Department, Faculty of Fisheries and Marine Science, University of Papua) ;
  • Tururaja, Tresia Sonya (Marine Science Department, Faculty of Fisheries and Marine Science, University of Papua) ;
  • Sipriyadi, Sipriyadi (Biology Department, Faculty of Science, Bengkulu University) ;
  • Kusuma, Aradea Bujana (Marine Science Department, Faculty of Fisheries and Marine Science, University of Papua)
  • Received : 2021.02.01
  • Accepted : 2021.04.05
  • Published : 2021.05.31

Abstract

Grouper is one of the most economically important fishes with various morphological forms and characteristics, meaning it is often difficult to identify species and distinguish between life stages, sometimes leading to morphological misidentification. Therefore, identification using a molecular deoxyribose nucleic acid (DNA) approach was needed as an alternative means to identify closely related species. This study aims to determine the molecular phylogeny of grouper from the northern part of the Bird's Head Seascape of Papua. The DNA sequence of each cytochrome oxidase I (COI) gene was used to study the molecular relationship among closely related species of grouper. The results showed that there were 16 Epinephelinae that have been compared to a gene bank (National Centre for Biotechnology Information, NCBI) in the sequence length of 623 base pairs. The closest genetic distance was found between Cephalopholis miniata and Cephalopholis sexmaculata (0.036), while the furthest genetic distance was observed between Plectropomus laevis and Cephalopholis spiloparaea (0.247). This finding was further reinforced by the morphological characters of each species. This finding highlighted that five genera were represented as a monophyletic group (clade), i.e., Epinephelus, Cephalopholis, Plectropomus, Saloptia and Variola.

Keywords

Acknowledgement

All authors wish to thank the funding of the grant Penelitian Dasar DIKTI, and the authors also thank the Marine Science Department students (Mataena, Corazon and Sukma) who have been very helpful in collecting the fish samples and extracting the DNA.

References

  1. Akbar N, Aris M, Irfan M, Tahir I, Baksir A. The phylogenetic study of tuna as management data in the waters around Maluku islands, Indonesia. J Kelaut. 2018;11:120-9.
  2. Alcantara SG, Yambot AV. DNA barcoding of commercially important grouper species (Perciformes, Serranidae) in the Philippines. Mitochondrial DNA Part A. 2014;27:3837-45. https://doi.org/10.3109/19401736.2014.958672
  3. Ariyanti Y, Farajallah A. Determination of grouper species of subfamily Epinephelinae from Raja Ampat (West Papua) region using CO1 gene sequence. Majalah Ilmiah Biologi Biosfera: Sci J. 2019;36:112-7.
  4. Avise JC. Molecular markers, natural history and evolution. Sunderland, MA: Chapman and Hall; 1994.
  5. Craig MT, Graham RT, Torres RA, Hyde JR, Freitas MO, Ferreira BP, et al. How many species of goliath grouper are there? Cryptic genetic divergence in a threatened marine fish and the resurrection of a geopolitical species. Endanger Species Res. 2009;7:167-74. https://doi.org/10.3354/esr00117
  6. Craig MT, Hastings PA. A molecular phylogeny of the groupers of the subfamily Epinephelinae (Serranidae) with a revised classification of the Epinephelini. Ichthyol Res. 2007;54:1-17. https://doi.org/10.1007/s10228-006-0367-x
  7. Craig MT, Pondella DJ, Franck JPC, Hafner JC. On the status of the serranid fish genus Epinephelus: evidence for paraphyly based upon 16s rDNA sequence. Mol Phylogenet Evol. 2001;19:121-30. https://doi.org/10.1006/mpev.2000.0913
  8. Crandall ED, Frey MA, Grosberg RK, Barber PH. Contrasting demographic history and phylogeographical patterns in two Indo-Pacific gastropods. Mol Ecol. 2008;17:611-26. https://doi.org/10.1111/j.1365-294X.2007.03600.x
  9. De-Franco BA, Fernando MF, Oliveira C, Foresti F. Illegal trade of the guitarfish Rhinobatos horkelii on the coasts of central and southern Brazil: genetic identification to aid conservation. Aquat Conserv. 2012;22:272-6. https://doi.org/10.1002/aqc.2229
  10. Ding S, Zhuang X, Guo F, Wang J, Su Y, Zhang Q, et al. Molecular phylogenetic relationships of China Seas groupers based on cytochrome b gene fragment sequences. Sci China Life Sci. 2006;49:235-42.
  11. Djong TH, Matsui M, Kuramoto M, Belabut DM, Sen YH, Nishioka M, et al. Morphological divergence, reproductive isolating mechanism, and molecular phylogenetic relationships among Indonesia, Malaysia, and Japan populations of the Fejervarya limnocharis complex (Anura, Ranidae). Zool Sci. 2007;24:1197-212. https://doi.org/10.2108/zsj.24.1197
  12. Dogan I, Dogan N. Genetic distance measures: review. Turkiye Klinikleri J Biostat. 2016;8:87-93. https://doi.org/10.5336/biostatic.2015-49517
  13. Habibi A, Sugiyanta, Yusuf C. Perikanan kerapu dan kakap-panduan penangkapan dan penanganan. Jakarta: WWF-Indonesia; 2011.
  14. Heemstra PC, Randall JE. Groupers of the world. FAO species catalogue. Rome: FAO; 1993.
  15. Hyde JR, Kimbrell CA, Budrick JE, Lynn EA, Vetter RD. Cryptic speciation in the vermilion rockfish (Sebastes miniatus) and the role of bathymetry in the speciation process. Mol Ecol. 2008;17:1122-36. https://doi.org/10.1111/j.1365-294X.2007.03653.x
  16. Jarczak J, Grochowalski L, Marciniak B, Lach J, Slomka M, Sobalska-Kwapis M, et al. Mitochondrial DNA variability of the Polish population. Eur J Hum Genet. 2019;27:1304-14. https://doi.org/10.1038/s41431-019-0381-x
  17. Jefri E, Zamani NP, Subhan B, Madduppa HH. Molecular phylogeny inferred from mitochondrial DNA of the grouper Epinephelus spp. in Indonesia collected from local fish market. Biodiversitas. 2015;16:254-63.
  18. Jordan DS, Eigenmann CH. A review of the genera and species of Serranidae found in the waters of America and Europe. Bull US Fish Comm. 1890;8:329-433.
  19. Katayama M. Studies on serranid fishes of Japan (1). Bull Fac Ed Yamaguchi Univ. 1959;8:103-80.
  20. Makarenkov V, Kevorkov D, Legendre P. Phylogenetic network reconstruction approaches. Appl Mycol Biotechnol. 2006;6:61-97. https://doi.org/10.1016/S1874-5334(06)80006-7
  21. Mathews LM. Cryptic biodiversity and phylogeographical patterns in a snapping shrimp species complex. Mol Ecol. 2006;15:4049-63. https://doi.org/10.1111/j.1365-294X.2006.03077.x
  22. Mayr E. Population species and evolution: an abridgement of animal species and evolution. Cambridge, MA: Harvard University Press; 1970.
  23. Meyer CP, Paulay G. DNA barcoding: error rates based on comprehensive sampling. PLOS Biol. 2005;3:e422. https://doi.org/10.1371/journal.pbio.0030422
  24. Nei M. Genetic distance between populations. Am Nat. 1972;106:283-92 https://doi.org/10.1086/282771
  25. Prasetya H, Saefuddin A, Muladno. Performance comparison between kimura 2-parameters and Jukes-Cantor model in constructing phylogenetic tree of neighbour joining. Forum Statistika dan Komputasi. 2011;8:8-16.
  26. Rodrigues KF, Shigeharu S, Ch'ng CL. Microsatellite markers for the identification of commercially important groupers Epinephelus lanceolatus, Cromileptes altivelis and Epinephelus fuscoguttatus. Pertanika J Trop Agric Sci. 2011;34:311-5.
  27. Sachithanandam V, Mohan PM, Muruganandam N, Chaaithanya IK, Dhivya P, Baskaran R. DNA barcoding, phylogenetic study of Epinephelus spp. from Andaman coastal region, India. Indian J Geo-mar Sci. 2012;41:203-11.
  28. Schoelinck C, Hinsinger DD, Dettai A, Cruaud C, Justine JL. A phylogenetic re-analysis of groupers with applications for ciguatera fish poisoning. PLOS ONE. 2014;9:e98198. https://doi.org/10.1371/journal.pone.0098198
  29. Steinke D, Hanner R. The FISH-BOL collaborators' protocol. Mitochondrial DNA. 2011;22:10-4. https://doi.org/10.3109/19401736.2010.536538
  30. Tamura K, Nei M, Kumar S. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci USA. 2004;101:11030-5. https://doi.org/10.1073/pnas.0404206101
  31. Tallei TE, Kolondam BJ. DNA Barcoding of Sangihe nutmeg (Myristica fragrans) using matK gene. Hayati J Biosci. 2015;22:41-7. https://doi.org/10.4308/hjb.22.1.41
  32. Ulrich RM, John DE, Barton GW, Hendrick GS, Fries DP, Paul JH. Ensuring seafood identity: grouper identification by real-time nucleic acid sequence-based amplification (RT-NASBA). Food Control. 2013;31:337-44. https://doi.org/10.1016/j.foodcont.2012.11.012
  33. Veneza I, Felipe B, Oliveira J, Silva R, Sampaio I, Schneider H, et al. A barcode for the authentication of the snappers (Lutjanidae) of the western Atlantic: rDNA 5S or mitochondrial COI? Food Control. 2014;38:116-23. https://doi.org/10.1016/j.foodcont.2013.10.012
  34. Waugh J. DNA barcoding in animal species: progress, potential and pitfalls. BioEssays. 2007;29:188-97. https://doi.org/10.1002/bies.20529
  35. Zhu ZY, Yue GH. The complete mitochondrial genome of red grouper Plectropomus leopardus and its applications in identification of grouper species. Aquaculture. 2008;276:44-9. https://doi.org/10.1016/j.aquaculture.2008.02.008