DOI QR코드

DOI QR Code

The role of gonadotropin-releasing hormone agonists in female fertility preservation

  • Lee, Jae Hoon (Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine) ;
  • Choi, Young Sik (Institute of Women's Life Medical Science, Yonsei University College of Medicine)
  • 투고 : 2020.08.26
  • 심사 : 2020.10.13
  • 발행 : 2021.03.31

초록

Advances in anticancer treatments have resulted in increasing survival rates among cancer patients. Accordingly, the quality of life after treatment, particularly the preservation of fertility, has gradually emerged as an essential consideration. Cryopreservation of embryos or unfertilized oocytes has been considered as the standard method of fertility preservation among young women facing gonadotoxic chemotherapy. Other methods, including ovarian suppression and ovarian tissue cryopreservation, have been considered experimental. Recent large-scale randomized controlled trials have demonstrated that temporary ovarian suppression using gonadotropin-releasing hormone agonists (GnRHa) during chemotherapy is beneficial for preventing chemotherapy-induced premature ovarian insufficiency in breast cancer patients. It should also be emphasized that GnRHa use during chemotherapy does not replace established fertility preservation methods. All young women facing gonadotoxic chemotherapy should be counseled about and offered various options for fertility preservation, including both GnRHa use and cryopreservation of embryos, oocytes, and/or ovarian tissue.

키워드

과제정보

This study was supported by the Korea Health Technology R&D Project through the Korea Health Industry Development Institute, funded by the Ministry of Health & Welfare, Republic of Korea (HI18C2047).

참고문헌

  1. Jung KW, Won YJ, Kong HJ, Lee ES. Cancer statistics in Korea: incidence, mortality, survival, and prevalence in 2016. Cancer Res Treat 2019;51:417-30. https://doi.org/10.4143/crt.2019.138
  2. Lee SJ, Schover LR, Partridge AH, Patrizio P, Wallace WH, Hagerty K, et al. American Society of Clinical Oncology recommendations on fertility preservation in cancer patients. J Clin Oncol 2006;24: 2917-31. https://doi.org/10.1200/JCO.2006.06.5888
  3. Loren AW, Mangu PB, Beck LN, Brennan L, Magdalinski AJ, Partridge AH, et al. Fertility preservation for patients with cancer: American Society of Clinical Oncology clinical practice guideline update. J Clin Oncol 2013;31:2500-10. https://doi.org/10.1200/JCO.2013.49.2678
  4. Oktay K, Harvey BE, Partridge AH, Quinn GP, Reinecke J, Taylor HS, et al. Fertility preservation in patients with cancer: ASCO clinical practice guideline update. J Clin Oncol 2018;36:1994-2001. https://doi.org/10.1200/JCO.2018.78.1914
  5. Letourneau JM, Ebbel EE, Katz PP, Oktay KH, McCulloch CE, Ai WZ, et al. Acute ovarian failure underestimates age-specific reproductive impairment for young women undergoing chemotherapy for cancer. Cancer 2012;118:1933-9. https://doi.org/10.1002/cncr.26403
  6. Glode LM, Robinson J, Gould SF. Protection from cyclophosphamide-induced testicular damage with an analogue of gonadotropin-releasing hormone. Lancet 1981;1:1132-4. https://doi.org/10.1016/S0140-6736(81)92301-1
  7. Ortin TT, Shostak CA, Donaldson SS. Gonadal status and reproductive function following treatment for Hodgkin's disease in childhood: the Stanford experience. Int J Radiat Oncol Biol Phys 1990;19:873-80. https://doi.org/10.1016/0360-3016(90)90007-7
  8. Waxman JH, Ahmed R, Smith D, Wrigley PF, Gregory W, Shalet S, et al. Failure to preserve fertility in patients with Hodgkin's disease. Cancer Chemother Pharmacol 1987;19:159-62. https://doi.org/10.1007/BF00254570
  9. Blumenfeld Z, Evron A. Preserving fertility when choosing chemotherapy regimens: the role of gonadotropin-releasing hormone agonists. Expert Opin Pharmacother 2015;16:1009-20. https://doi.org/10.1517/14656566.2015.1031654
  10. Paluch-Shimon S, Cardoso F, Partridge AH, Abulkhair O, Azim HA Jr, Bianchi-Micheli G, et al. ESO-ESMO 4th International Consensus Guidelines for Breast Cancer in Young Women (BCY4). Ann Oncol 2020;31:674-96. https://doi.org/10.1016/j.annonc.2020.03.284
  11. Yasmin E, Balachandren N, Davies MC, Jones GL, Lane S, Mathur R, et al. Fertility preservation for medical reasons in girls and women: British fertility society policy and practice guideline. Hum Fertil (Camb) 2018;21:3-26. https://doi.org/10.1080/14647273.2017.1422297
  12. Johnson J, Canning J, Kaneko T, Pru JK, Tilly JL. Germline stem cells and follicular renewal in the postnatal mammalian ovary. Nature 2004;428:145-50. https://doi.org/10.1038/nature02316
  13. Wallace WH, Kelsey TW. Human ovarian reserve from conception to the menopause. PLoS One 2010;5:e8772. https://doi.org/10.1371/journal.pone.0008772
  14. Morgan S, Anderson RA, Gourley C, Wallace WH, Spears N. How do chemotherapeutic agents damage the ovary? Hum Reprod Update 2012;18:525-35. https://doi.org/10.1093/humupd/dms022
  15. Chiarelli AM, Marrett LD, Darlington G. Early menopause and infertility in females after treatment for childhood cancer diagnosed in 1964-1988 in Ontario, Canada. Am J Epidemiol 1999; 150:245-54. https://doi.org/10.1093/oxfordjournals.aje.a009995
  16. Petrek JA, Naughton MJ, Case LD, Paskett ED, Naftalis EZ, Singletary SE, et al. Incidence, time course, and determinants of menstrual bleeding after breast cancer treatment: a prospective study. J Clin Oncol 2006;24:1045-51. https://doi.org/10.1200/JCO.2005.03.3969
  17. Kalich-Philosoph L, Roness H, Carmely A, Fishel-Bartal M, Ligumsky H, Paglin S, et al. Cyclophosphamide triggers follicle activation and "burnout"; AS101 prevents follicle loss and preserves fertility. Sci Transl Med 2013;5:185ra62. https://doi.org/10.1126/scitranslmed.3005402
  18. Gavish Z, Peer G, Roness H, Cohen Y, Meirow D. Follicle activation and 'burn-out' contribute to post-transplantation follicle loss in ovarian tissue grafts: the effect of graft thickness. Hum Reprod 2014;29:989-96. https://doi.org/10.1093/humrep/deu015
  19. Blumenfeld Z, Evron A. Endocrine prevention of chemotherapy-induced ovarian failure. Curr Opin Obstet Gynecol 2016;28: 223-9. https://doi.org/10.1097/GCO.0000000000000278
  20. Blumenfeld Z, von Wolff M. GnRH-analogues and oral contraceptives for fertility preservation in women during chemotherapy. Hum Reprod Update 2008;14:543-52. https://doi.org/10.1093/humupd/dmn022
  21. Perez GI, Knudson CM, Leykin L, Korsmeyer SJ, Tilly JL. Apoptosis-associated signaling pathways are required for chemotherapy-mediated female germ cell destruction. Nat Med 1997;3: 1228-32. https://doi.org/10.1038/nm1197-1228
  22. Jurisicova A, Lee HJ, D'Estaing SG, Tilly J, Perez GI. Molecular requirements for doxorubicin-mediated death in murine oocytes. Cell Death Differ 2006;13:1466-74. https://doi.org/10.1038/sj.cdd.4401819
  23. Bar-Joseph H, Ben-Aharon I, Rizel S, Stemmer SM, Tzabari M, Shalgi R. Doxorubicin-induced apoptosis in germinal vesicle (GV) oocytes. Reprod Toxicol 2010;30:566-72. https://doi.org/10.1016/j.reprotox.2010.07.003
  24. Gonfloni S, Di Tella L, Caldarola S, Cannata SM, Klinger FG, Di Bartolomeo C, et al. Inhibition of the c-Abl-TAp63 pathway protects mouse oocytes from chemotherapy-induced death. Nat Med 2009;15:1179-85. https://doi.org/10.1038/nm.2033
  25. Ben-Aharon I, Bar-Joseph H, Tzarfaty G, Kuchinsky L, Rizel S, Stemmer SM, et al. Doxorubicin-induced ovarian toxicity. Reprod Biol Endocrinol 2010;8:20. https://doi.org/10.1186/1477-7827-8-20
  26. Utsunomiya T, Tanaka T, Utsunomiya H, Umesaki N. A novel molecular mechanism for anticancer drug-induced ovarian failure: irinotecan HCl, an anticancer topoisomerase I inhibitor, induces specific FasL expression in granulosa cells of large ovarian follicles to enhance follicular apoptosis. Int J Oncol 2008;32:991-1000.
  27. Zhao XJ, Huang YH, Yu YC, Xin XY. GnRH antagonist cetrorelix inhibits mitochondria-dependent apoptosis triggered by chemotherapy in granulosa cells of rats. Gynecol Oncol 2010;118:69-75. https://doi.org/10.1016/j.ygyno.2010.03.021
  28. Meirow D, Dor J, Kaufman B, Shrim A, Rabinovici J, Schiff E, et al. Cortical fibrosis and blood-vessels damage in human ovaries exposed to chemotherapy: potential mechanisms of ovarian injury. Hum Reprod 2007;22:1626-33. https://doi.org/10.1093/humrep/dem027
  29. Marcello MF, Nuciforo G, Romeo R, Di Dino G, Russo I, Russo A, et al. Structural and ultrastructural study of the ovary in childhood leukemia after successful treatment. Cancer 1990;66:2099-104. https://doi.org/10.1002/1097-0142(19901115)66:10<2099::AID-CNCR2820661010>3.0.CO;2-3
  30. Soleimani R, Heytens E, Darzynkiewicz Z, Oktay K. Mechanisms of chemotherapy-induced human ovarian aging: double strand DNA breaks and microvascular compromise. Aging (Albany NY) 2011;3:782-93. https://doi.org/10.18632/aging.100363
  31. Matzuk MM, Burns KH, Viveiros MM, Eppig JJ. Intercellular communication in the mammalian ovary: oocytes carry the conversation. Science 2002;296:2178-80. https://doi.org/10.1126/science.1071965
  32. Petrillo SK, Desmeules P, Truong TQ, Devine PJ. Detection of DNA damage in oocytes of small ovarian follicles following phosphoramide mustard exposures of cultured rodent ovaries in vitro. Toxicol Appl Pharmacol 2011;253:94-102. https://doi.org/10.1016/j.taap.2011.03.012
  33. Desmeules P, Devine PJ. Characterizing the ovotoxicity of cyclophosphamide metabolites on cultured mouse ovaries. Toxicol Sci 2006;90:500-9. https://doi.org/10.1093/toxsci/kfj086
  34. Oktem O, Oktay K. Quantitative assessment of the impact of chemotherapy on ovarian follicle reserve and stromal function. Cancer 2007;110:2222-9. https://doi.org/10.1002/cncr.23071
  35. Abir R, Ben-Haroush A, Felz C, Okon E, Raanani H, Orvieto R, et al. Selection of patients before and after anticancer treatment for ovarian cryopreservation. Hum Reprod 2008;23:869-77. https://doi.org/10.1093/humrep/dem413
  36. Smith ML, Kumar MA. The "two faces" of tumor suppressor p53-revisited. Mol Cell Pharmacol 2010;2:117-9.
  37. Downs SM, Utecht AM. Metabolism of radiolabeled glucose by mouse oocytes and oocyte-cumulus cell complexes. Biol Reprod 1999;60:1446-52. https://doi.org/10.1095/biolreprod60.6.1446
  38. Siddik ZH. Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene 2003;22:7265-79. https://doi.org/10.1038/sj.onc.1206933
  39. Gonfloni S. DNA damage stress response in germ cells: role of c-Abl and clinical implications. Oncogene 2010;29:6193-202. https://doi.org/10.1038/onc.2010.410
  40. Flaws JA, Abbud R, Mann RJ, Nilson JH, Hirshfield AN. Chronically elevated luteinizing hormone depletes primordial follicles in the mouse ovary. Biol Reprod 1997;57:1233-7. https://doi.org/10.1095/biolreprod57.5.1233
  41. Lobo RA. Potential options for preservation of fertility in women. N Engl J Med 2005;353:64-73. https://doi.org/10.1056/NEJMra043475
  42. Patsoula E, Loutradis D, Drakakis P, Michalas L, Bletsa R, Michalas S. Messenger RNA expression for the follicle-stimulating hormone receptor and luteinizing hormone receptor in human oocytes and preimplantation-stage embryos. Fertil Steril 2003;79:1187-93. https://doi.org/10.1016/S0015-0282(03)00071-2
  43. Zheng W, Magid MS, Kramer EE, Chen YT. Follicle-stimulating hormone receptor is expressed in human ovarian surface epithelium and fallopian tube. Am J Pathol 1996;148:47-53.
  44. Knight PG, Glister C. TGF-beta superfamily members and ovarian follicle development. Reproduction 2006;132:191-206. https://doi.org/10.1530/rep.1.01074
  45. Babu PS, Danilovich N, Sairam MR. Hormone-induced receptor gene splicing: enhanced expression of the growth factor type I follicle-stimulating hormone receptor motif in the developing mouse ovary as a new paradigm in growth regulation. Endocrinology 2001;142:381-9. https://doi.org/10.1210/endo.142.1.7886
  46. Adriaens I, Cortvrindt R, Smitz J. Differential FSH exposure in preantral follicle culture has marked effects on folliculogenesis and oocyte developmental competence. Hum Reprod 2004;19:398-408. https://doi.org/10.1093/humrep/deh074
  47. Edson MA, Nagaraja AK, Matzuk MM. The mammalian ovary from genesis to revelation. Endocr Rev 2009;30:624-712. https://doi.org/10.1210/er.2009-0012
  48. Webb R, Garnsworthy PC, Gong JG, Armstrong DG. Control of follicular growth: local interactions and nutritional influences. J Anim Sci 2004;82 E-Suppl:E63-74.
  49. Patel H, Bhartiya D, Parte S, Gunjal P, Yedurkar S, Bhatt M. Follicle stimulating hormone modulates ovarian stem cells through alternately spliced receptor variant FSH-R3. J Ovarian Res 2013;6:52. https://doi.org/10.1186/1757-2215-6-52
  50. Oktay K, Briggs D, Gosden RG. Ontogeny of follicle-stimulating hormone receptor gene expression in isolated human ovarian follicles. J Clin Endocrinol Metab 1997;82:3748-51. https://doi.org/10.1210/jcem.82.11.4346
  51. Chapman RM, Sutcliffe SB. Protection of ovarian function by oral contraceptives in women receiving chemotherapy for Hodgkin's disease. Blood 1981;58:849-51. https://doi.org/10.1182/blood.V58.4.849.849
  52. Poggio F, Lambertini M, Bighin C, Conte B, Blondeaux E, D'Alonzo A, et al. Potential mechanisms of ovarian protection with gonadotropin-releasing hormone agonist in breast cancer patients: a review. Clin Med Insights Reprod Health 2019;13:1179558119864584.
  53. Blumenfeld Z. How to preserve fertility in young women exposed to chemotherapy? The role of GnRH agonist cotreatment in addition to cryopreservation of embrya, oocytes, or ovaries. Oncologist 2007;12:1044-54. https://doi.org/10.1634/theoncologist.12-9-1044
  54. Lambertini M, Horicks F, Del Mastro L, Partridge AH, Demeestere I. Ovarian protection with gonadotropin-releasing hormone agonists during chemotherapy in cancer patients: from biological evidence to clinical application. Cancer Treat Rev 2019;72:65-77. https://doi.org/10.1016/j.ctrv.2018.11.006
  55. Kitajima Y, Endo T, Nagasawa K, Manase K, Honnma H, Baba T, et al. Hyperstimulation and a gonadotropin-releasing hormone agonist modulate ovarian vascular permeability by altering expression of the tight junction protein claudin-5. Endocrinology 2006; 147:694-9. https://doi.org/10.1210/en.2005-0700
  56. Saitta A, Altavilla D, Cucinotta D, Morabito N, Frisina N, Corrado F, et al. Randomized, double-blind, placebo-controlled study on effects of raloxifene and hormone replacement therapy on plasma no concentrations, endothelin-1 levels, and endothelium-dependent vasodilation in postmenopausal women. Arterioscler Thromb Vasc Biol 2001;21:1512-9. https://doi.org/10.1161/hq0901.095565
  57. Grundker C, Emons G. Role of gonadotropin-releasing hormone (GnRH) in ovarian cancer. Reprod Biol Endocrinol 2003;1:65. https://doi.org/10.1186/1477-7827-1-65
  58. Harrison GS, Wierman ME, Nett TM, Glode LM. Gonadotropin-releasing hormone and its receptor in normal and malignant cells. Endocr Relat Cancer 2004;11:725-48. https://doi.org/10.1677/erc.1.00777
  59. Leung PC, Cheng CK, Zhu XM. Multi-factorial role of GnRH-I and GnRH-II in the human ovary. Mol Cell Endocrinol 2003;202:145-53. https://doi.org/10.1016/S0303-7207(03)00076-5
  60. Imai A, Sugiyama M, Furui T, Tamaya T, Ohno T. Direct protection by a gonadotropin-releasing hormone analog from doxorubicin-induced granulosa cell damage. Gynecol Obstet Invest 2007; 63:102-6. https://doi.org/10.1159/000096062
  61. Morita Y, Perez GI, Paris F, Miranda SR, Ehleiter D, Haimovitz-Friedman A, et al. Oocyte apoptosis is suppressed by disruption of the acid sphingomyelinase gene or by sphingosine-1-phosphate therapy. Nat Med 2000;6:1109-14. https://doi.org/10.1038/80442
  62. Li F, Turan V, Lierman S, Cuvelier C, de Sutter P, Oktay K. Sphingosine-1-phosphate prevents chemotherapy-induced human primordial follicle death. Hum Reprod 2014;29:107-13. https://doi.org/10.1093/humrep/det391
  63. Zelinski MB, Murphy MK, Lawson MS, Jurisicova A, Pau KY, Toscano NP, et al. In vivo delivery of FTY720 prevents radiation-induced ovarian failure and infertility in adult female nonhuman primates. Fertil Steril 2011;95:1440-5. https://doi.org/10.1016/j.fertnstert.2011.01.012
  64. Johnson J, Bagley J, Skaznik-Wikiel M, Lee HJ, Adams GB, Niikura Y, et al. Oocyte generation in adult mammalian ovaries by putative germ cells in bone marrow and peripheral blood. Cell 2005;122: 303-15. https://doi.org/10.1016/j.cell.2005.06.031
  65. Gargett CE. Review article: stem cells in human reproduction. Reprod Sci 2007;14:405-24. https://doi.org/10.1177/1933719107306231
  66. Blumenfeld Z. Fertility preservation using GnRH agonists: rationale, possible mechanisms, and explanation of controversy. Clin Med Insights Reprod Health 2019;13:1179558119870163.
  67. Scaruffi P, Stigliani S, Cardinali B, Massarotti C, Lambertini M, Sozzi F, et al. Gonadotropin releasing hormone agonists have an anti-apoptotic effect on cumulus cells. Int J Mol Sci 2019;20:6045. https://doi.org/10.3390/ijms20236045
  68. Coccia PF, Pappo AS, Beaupin L, Borges VF, Borinstein SC, Chugh R, et al. Adolescent and young adult oncology, version 2.2018, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw 2018;16:66-97. https://doi.org/10.6004/jnccn.2018.0001
  69. Von Wolff M, Germeyer A, Liebenthron J, Korell M, Nawroth F. Practical recommendations for fertility preservation in women by the FertiPROTEKT network. Part II: fertility preservation techniques. Arch Gynecol Obstet 2018;297:257-67. https://doi.org/10.1007/s00404-017-4595-2
  70. ISFP Practice Committee; Kim SS, Donnez J, Barri P, Pellicer A, Patrizio P, et al. Recommendations for fertility preservation in patients with lymphoma, leukemia, and breast cancer. J Assist Reprod Genet 2012;29:465-8. https://doi.org/10.1007/s10815-012-9786-y
  71. Klemp JR, Kim SS; ISFP Practice Committee. Fertility preservation in young women with breast cancer. J Assist Reprod Genet 2012; 29:469-72. https://doi.org/10.1007/s10815-012-9791-1
  72. Giuseppe L, Attilio G, Edoardo DN, Loredana G, Cristina L, Vincenzo L. Ovarian function after cancer treatment in young women affected by Hodgkin disease (HD). Hematology 2007;12:141-7. https://doi.org/10.1080/10245330600954072
  73. Gilani MM, Hasanzadeh M, Ghaemmaghami F, Ramazanzadeh F. Ovarian preservation with gonadotropin-releasing hormone analog during chemotherapy. Asia Pac J Clin Oncol 2007;3:79-83. https://doi.org/10.1111/j.1743-7563.2007.00089.x
  74. Badawy A, Elnashar A, El-Ashry M, Shahat M. Gonadotropin-releasing hormone agonists for prevention of chemotherapy-induced ovarian damage: prospective randomized study. Fertil Steril 2009;91:694-7. https://doi.org/10.1016/j.fertnstert.2007.12.044
  75. Sverrisdottir A, Nystedt M, Johansson H, Fornander T. Adjuvant goserelin and ovarian preservation in chemotherapy treated patients with early breast cancer: results from a randomized trial. Breast Cancer Res Treat 2009;117:561-7. https://doi.org/10.1007/s10549-009-0313-5
  76. Behringer K, Wildt L, Mueller H, Mattle V, Ganitis P, van den Hoonaard B, et al. No protection of the ovarian follicle pool with the use of GnRH-analogues or oral contraceptives in young women treated with escalated BEACOPP for advanced-stage Hodgkin lymphoma: final results of a phase II trial from the German Hodgkin Study Group. Ann Oncol 2010;21:2052-60. https://doi.org/10.1093/annonc/mdq066
  77. Gerber B, von Minckwitz G, Stehle H, Reimer T, Felberbaum R, Maass N, et al. Effect of luteinizing hormone-releasing hormone agonist on ovarian function after modern adjuvant breast cancer chemotherapy: the GBG 37 ZORO study. J Clin Oncol 2011;29: 2334-41. https://doi.org/10.1200/JCO.2010.32.5704
  78. Munster PN, Moore AP, Ismail-Khan R, Cox CE, Lacevic M, Gross-King M, et al. Randomized trial using gonadotropin-releasing hormone agonist triptorelin for the preservation of ovarian function during (neo)adjuvant chemotherapy for breast cancer. J Clin Oncol 2012;30:533-8.
  79. Song G, Gao H, Yuan Z. Effect of leuprolide acetate on ovarian function after cyclophosphamide-doxorubicin-based chemotherapy in premenopausal patients with breast cancer: results from a phase II randomized trial. Med Oncol 2013;30:667. https://doi.org/10.1007/s12032-013-0667-8
  80. Elgindy EA, El-Haieg DO, Khorshid OM, Ismail EI, Abdelgawad M, Sallam HN, et al. Gonadatrophin suppression to prevent chemotherapy-induced ovarian damage: a randomized controlled trial. Obstet Gynecol 2013;121:78-86. https://doi.org/10.1097/AOG.0b013e31827374e2
  81. Karimi-Zarchi M, Forat-Yazdi M, Vafaeenasab MR, Nakhaie-Moghadam M, Miratashi-Yazdi A, Teimoori S, et al. Evaluation of the effect of GnRH agonist on menstrual reverse in breast cancer cases treated with cyclophosphamide. Eur J Gynaecol Oncol 2014;35: 59-61.
  82. Lambertini M, Boni L, Michelotti A, Gamucci T, Scotto T, Gori S, et al. Ovarian suppression with triptorelin during adjuvant breast cancer chemotherapy and long-term ovarian function, pregnancies, and disease-free survival: a randomized clinical trial. JAMA 2015;314:2632-40. https://doi.org/10.1001/jama.2015.17291
  83. Moore HC, Unger JM, Phillips KA, Boyle F, Hitre E, Porter D, et al. Goserelin for ovarian protection during breast-cancer adjuvant chemotherapy. N Engl J Med 2015;372:923-32. https://doi.org/10.1056/NEJMoa1413204
  84. Demeestere I, Brice P, Peccatori FA, Kentos A, Dupuis J, Zachee P, et al. No evidence for the benefit of gonadotropin-releasing hormone agonist in preserving ovarian function and fertility in lymphoma survivors treated with chemotherapy: final long-term report of a prospective randomized trial. J Clin Oncol 2016;34: 2568-74. https://doi.org/10.1200/JCO.2015.65.8864
  85. Leonard RC, Adamson DJ, Bertelli G, Mansi J, Yellowlees A, Dunlop J, et al. GnRH agonist for protection against ovarian toxicity during chemotherapy for early breast cancer: the Anglo Celtic Group OPTION trial. Ann Oncol 2017;28:1811-6. https://doi.org/10.1093/annonc/mdx184
  86. Zhang Y, Ji Y, Li J, Lei L, Wu S, Zuo W, et al. Sequential versus simultaneous use of chemotherapy and gonadotropin-releasing hormone agonist (GnRHa) among estrogen receptor (ER)-positive premenopausal breast cancer patients: effects on ovarian function, disease-free survival, and overall survival. Breast Cancer Res Treat 2018;168:679-86. https://doi.org/10.1007/s10549-018-4660-y
  87. Zhong Y, Lin Y, Cheng X, Huang X, Zhou Y, Mao F, et al. GnRHa for ovarian protection and the association between amh and ovarian function during adjuvant chemotherapy for breast cancer. J Cancer 2019;10:4278-85. https://doi.org/10.7150/jca.31859
  88. Hickman LC, Llarena NC, Valentine LN, Liu X, Falcone T. Preservation of gonadal function in women undergoing chemotherapy: a systematic review and meta-analysis of the potential role for gonadotropin-releasing hormone agonists. J Assist Reprod Genet 2018;35:571-81. https://doi.org/10.1007/s10815-018-1128-2
  89. Sofiyeva N, Siepmann T, Barlinn K, Seli E, Ata B. Gonadotropin-releasing hormone analogs for gonadal protection during gonadotoxic chemotherapy: a systematic review and meta-analysis. Reprod Sci 2019;26:939-53. https://doi.org/10.1177/1933719118799203
  90. Bai F, Lu Y, Wu K, Chen Q, Ding L, Ge M, et al. Protecting effects of gonadotropin-releasing hormone agonist on chemotherapy-induced ovarian damage in premenopausal breast cancer patients: a systematic review and meta-analysis. Breast Care (Basel) 2017;12:48-52. https://doi.org/10.1159/000454983
  91. Senra JC, Roque M, Talim MC, Reis FM, Tavares RL. Gonadotropin-releasing hormone agonists for ovarian protection during cancer chemotherapy: systematic review and meta-analysis. Ultrasound Obstet Gynecol 2018;51:77-86. https://doi.org/10.1002/uog.18934
  92. Elgindy E, Sibai H, Abdelghani A, Mostafa M. Protecting ovaries during chemotherapy through gonad suppression: a systematic review and meta-analysis. Obstet Gynecol 2015;126:187-95. https://doi.org/10.1097/AOG.0000000000000905
  93. Lambertini M, Ceppi M, Poggio F, Peccatori FA, Azim HA Jr, Ugolini D, et al. Ovarian suppression using luteinizing hormone-releasing hormone agonists during chemotherapy to preserve ovarian function and fertility of breast cancer patients: a meta-analysis of randomized studies. Ann Oncol 2015;26:2408-19. https://doi.org/10.1093/annonc/mdv374
  94. Munhoz RR, Pereira AA, Sasse AD, Hoff PM, Traina TA, Hudis CA, et al. Gonadotropin-releasing hormone agonists for ovarian function preservation in premenopausal women undergoing chemotherapy for early-stage breast cancer: a systematic review and meta-analysis. JAMA Oncol 2016;2:65-73. https://doi.org/10.1001/jamaoncol.2015.3251
  95. Lambertini M, Moore HC, Leonard RC, Loibl S, Munster P, Bruzzone M, et al. Gonadotropin-releasing hormone agonists during chemotherapy for preservation of ovarian function and fertility in premenopausal patients with early breast cancer: a systematic review and meta-analysis of individual patient-level data. J Clin Oncol 2018;36:1981-90. https://doi.org/10.1200/JCO.2018.78.0858
  96. Chen H, Xiao L, Li J, Cui L, Huang W. Adjuvant gonadotropin-releasing hormone analogues for the prevention of chemotherapy-induced premature ovarian failure in premenopausal women. Cochrane Database Syst Rev 2019;3:CD008018.
  97. Oktay K, Turan V. Failure of ovarian suppression with gonadotropin-releasing hormone analogs to preserve fertility: an assessment based on the quality of evidence. JAMA Oncol 2016;2:74-5. https://doi.org/10.1001/jamaoncol.2015.3252
  98. Silva C, Caramelo O, Almeida-Santos T, Ribeiro Rama AC. Factors associated with ovarian function recovery after chemotherapy for breast cancer: a systematic review and meta-analysis. Hum Reprod 2016;31:2737-49. https://doi.org/10.1093/humrep/dew224
  99. Ortmann O, Weiss JM, Diedrich K. Gonadotrophin-releasing hormone (GnRH) and GnRH agonists: mechanisms of action. Reprod Biomed Online 2002;5 Suppl 1:1-7. https://doi.org/10.1016/S1472-6483(11)60210-1
  100. Meirow D, Biederman H, Anderson RA, Wallace WH. Toxicity of chemotherapy and radiation on female reproduction. Clin Obstet Gynecol 2010;53:727-39. https://doi.org/10.1097/GRF.0b013e3181f96b54
  101. Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst 1959;22: 719-48.
  102. Blumenfeld Z. ZORO study: discrepancy between the conclusion and the results. J Clin Oncol 2011;29:3340. https://doi.org/10.1200/JCO.2011.36.9850
  103. Turner NH, Partridge A, Sanna G, Di Leo A, Biganzoli L. Utility of gonadotropin-releasing hormone agonists for fertility preservation in young breast cancer patients: the benefit remains uncertain. Ann Oncol 2013;24:2224-35. https://doi.org/10.1093/annonc/mdt196
  104. Bedoschi G, Turan V, Oktay K. Utility of GnRH-agonists for fertility preservation in women with operable breast cancer: is it protective? Curr Breast Cancer Rep 2013;5:302-8. https://doi.org/10.1007/s12609-013-0123-y
  105. Goldenberg GJ, Froese EK. Antagonism of the cytocidal activity and uptake of melphalan by tamoxifen in human breast cancer cells in vitro. Biochem Pharmacol 1985;34:763-70. https://doi.org/10.1016/0006-2952(85)90755-5
  106. Woods KE, Randolph JK, Gewirtz DA. Antagonism between tamoxifen and doxorubicin in the MCF-7 human breast tumor cell line. Biochem Pharmacol 1994;47:1449-52. https://doi.org/10.1016/0006-2952(94)90346-8
  107. Albain KS, Barlow WE, Ravdin PM, Farrar WB, Burton GV, Ketchel SJ, et al. Adjuvant chemotherapy and timing of tamoxifen in postmenopausal patients with endocrine-responsive, node-positive breast cancer: a phase 3, open-label, randomised controlled trial. Lancet 2009;374:2055-63. https://doi.org/10.1016/S0140-6736(09)61523-3
  108. International Breast Cancer Study Group. Late effects of adjuvant oophorectomy and chemotherapy upon premenopausal breast cancer patients. Ann Oncol 1990;1:30-5. https://doi.org/10.1093/oxfordjournals.annonc.a057670
  109. Rivkin SE, Green S, O'Sullivan J, Cruz AB, Abeloff MD, Jewell WR, et al. Adjuvant CMFVP versus adjuvant CMFVP plus ovariectomy for premenopausal, node-positive, and estrogen receptor-positive breast cancer patients: a SouthwestOncology Group study. J Clin Oncol 1996;14:46-51. https://doi.org/10.1200/JCO.1996.14.1.46
  110. Arriagada R, Le MG, Spielmann M, Mauriac L, Bonneterre J, Namer M, et al. Randomized trial of adjuvant ovarian suppression in 926 premenopausal patients with early breast cancer treated with adjuvant chemotherapy. Ann Oncol 2005;16:389-96. https://doi.org/10.1093/annonc/mdi085
  111. Pagani O, Regan MM, Walley BA, Fleming GF, Colleoni M, Lang I, et al. Adjuvant exemestane with ovarian suppression in premenopausal breast cancer. N Engl J Med 2014;371:107-18. https://doi.org/10.1056/NEJMoa1404037
  112. Gradishar WJ, Anderson BO, Balassanian R, Blair SL, Burstein HJ, Cyr A, et al. Invasive breast cancer version 1.2016, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw 2016; 14:324-54. https://doi.org/10.6004/jnccn.2016.0037
  113. Coates AS, Winer EP, Goldhirsch A, Gelber RD, Gnant M, Piccart-Gebhart M, et al. Tailoring therapies: improving the management of early breast cancer: St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2015. Ann Oncol 2015;26:1533-46. https://doi.org/10.1093/annonc/mdv221
  114. Paluch-Shimon S, Pagani O, Partridge AH, Bar-Meir E, Fallowfield L, Fenlon D, et al. Second international consensus guidelines for breast cancer in young women (BCY2). Breast 2016;26:87-99. https://doi.org/10.1016/j.breast.2015.12.010
  115. Dunlop CE, Anderson RA. Uses of anti-Mullerian hormone (AMH) measurement before and after cancer treatment in women. Maturitas 2015;80:245-50. https://doi.org/10.1016/j.maturitas.2014.12.005
  116. Lunsford AJ, Whelan K, McCormick K, McLaren JF. Antimullerian hormone as a measure of reproductive function in female childhood cancer survivors. Fertil Steril 2014;101:227-31. https://doi.org/10.1016/j.fertnstert.2013.08.052
  117. Miyoshi Y, Yasuda K, Miyamura T, Miyashita E, Hashii Y, Ozono K. Anti-Mullerian hormone is a useful marker of gonadotoxicity in girls treated for cancer: a prospective study. Horm Res Paediatr 2015;84:479.
  118. Anderson RA, Wallace WH. Antimullerian hormone, the assessment of the ovarian reserve, and the reproductive outcome of the young patient with cancer. Fertil Steril 2013;99:1469-75. https://doi.org/10.1016/j.fertnstert.2013.03.014
  119. Peigne M, Decanter C. Serum AMH level as a marker of acute and long-term effects of chemotherapy on the ovarian follicular content: a systematic review. Reprod Biol Endocrinol 2014;12:26. https://doi.org/10.1186/1477-7827-12-26
  120. Freour T, Barriere P, Masson D. Anti-mullerian hormone levels and evolution in women of reproductive age with breast cancer treated with chemotherapy. Eur J Cancer 2017;74:1-8. https://doi.org/10.1016/j.ejca.2016.12.008
  121. Steiner AZ, Pritchard D, Stanczyk FZ, Kesner JS, Meadows JW, Herring AH, et al. Association between biomarkers of ovarian reserve and infertility among older women of reproductive age. JAMA 2017;318:1367-76. https://doi.org/10.1001/jama.2017.14588
  122. Hamy AS, Porcher R, Eskenazi S, Cuvier C, Giacchetti S, Coussy F, et al. Anti-Mullerian hormone in breast cancer patients treated with chemotherapy: a retrospective evaluation of subsequent pregnancies. Reprod Biomed Online 2016;32:299-307. https://doi.org/10.1016/j.rbmo.2015.12.008
  123. Janse F, Donnez J, Anckaert E, de Jong FH, Fauser BC, Dolmans MM. Limited value of ovarian function markers following orthotopic transplantation of ovarian tissue after gonadotoxic treatment. J Clin Endocrinol Metab 2011;96:1136-44. https://doi.org/10.1210/jc.2010-2188
  124. Lambertini M, Del Mastro L, Pescio MC, Andersen CY, Azim HA Jr, Peccatori FA, et al. Cancer and fertility preservation: international recommendations from an expert meeting. BMC Med 2016;14:1. https://doi.org/10.1186/s12916-015-0545-7

피인용 문헌

  1. The need to reduce gonadotoxicity! fertility reserve after chemotherapy for gynaecological cancer vol.37, pp.6, 2021, https://doi.org/10.1080/09513590.2021.1929153