DOI QR코드

DOI QR Code

The regulatory role of Korean ginseng in skin cells

  • You, Long (Department of Integrative Biotechnology, and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University) ;
  • Cho, Jae Youl (Department of Integrative Biotechnology, and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University)
  • 투고 : 2020.06.15
  • 심사 : 2020.08.26
  • 발행 : 2021.05.01

초록

As the largest organ in our body, the skin acts as a barrier against external stress and damages. There are various cell types of skin, such as keratinocytes, melanocytes, fibroblasts, and skin stem cells. Korean ginseng, which is one of the biggest distributions of ginseng worldwide, is processed into different products, such as functional food, cosmetics, and medical supplies. This review aims to introduce the functional role of Korean ginseng on different dermal cell types, including the impact of Korean ginseng in anti-photodamaging, anti-inflammatory, anti-oxidative, anti-melanogenic, and wound healing activities, etc. We propose that this information could form the basis of future research of ginseng-derived components in skin health.

키워드

과제정보

This research was funded by the Basic Science Research Program through the National Research Foundation of Korea (NRF), the Ministry of Science and ICT, Republic of Korea (2017R1A6A1A03015642).

참고문헌

  1. Gould J. Superpowered skin. Nature 2018;563:S84-5. https://doi.org/10.1038/d41586-018-07429-3
  2. Gravitz L. Skin. Nature 2018;563:S83. https://doi.org/10.1038/d41586-018-07428-4
  3. Hoerter JD, Bradley P, Casillas A, Chambers D, Denholm C, Johnson K, Weiswasser B. Extrafollicular dermal melanocyte stem cells and melanoma. Stem Cells Int 2012;2012:407079. https://doi.org/10.1155/2012/407079
  4. Ortonne JP. Normal and abnormal skin color. Ann Dermatol Venereol 2012;139:S125-9. https://doi.org/10.1016/S0151-9638(12)70123-0
  5. Nilforoushzadeh MA, Ashtiani HRA, Jaffary F, Jahangiri F, Nikkhah N, Mahmoudbeyk M, Fard M, Ansari Z, Zare S. Dermal fibroblast cells: biology and function in skin regeneration. J Ski Stem Cell 2017;4.
  6. Blanpain C, Fuchs E. Epidermal stem cells of the skin. Annu Rev Cell Dev Biol 2006;22:339-73. https://doi.org/10.1146/annurev.cellbio.22.010305.104357
  7. Yun TK. Brief introduction of panax ginseng CA meyer. J Korean Med Sci 2001;16:S3. https://doi.org/10.3346/jkms.2001.16.S.S3
  8. Kim K. Effect of ginseng and ginsenosides on melanogenesis and their mechanism of action. J Ginseng Res 2015;39:1-6. https://doi.org/10.1016/j.jgr.2014.10.006
  9. Liu X, Xiao Y, Hwang E, Haeng JJ, Yi T. Antiphotoaging and antimelanogenesis properties of ginsenoside C-Y, a ginsenoside Rb2 metabolite from American ginseng PDD-ginsenoside. Photochem Photobiol 2019;95:1412-23. https://doi.org/10.1111/php.13116
  10. Nam J, Min J, Son M, Oh J, Kang S. Ultraviolet-and infrared-induced 11 beta-hydroxysteroid dehydrogenase type 1 activating skin photoaging is inhibited by red ginseng extract containing high concentration of ginsenoside Rg3 (S). Photodermatol Photoimmunol Photomed 2017;33:311-20. https://doi.org/10.1111/phpp.12337
  11. Hwang E, Park S-Y, Yin CS, Kim H-T, Kim YM, Yi TH. Antiaging effects of the mixture of Panax ginseng and Crataegus pinnatifida in human dermal fibroblasts and healthy human skin. J Ginseng Res 2017;41:69-77. https://doi.org/10.1016/j.jgr.2016.01.001
  12. Barker JNWN, Griffiths CEM, Nickoloff BJ, Mitra RS, Dixit VM, Nickoloff BJ. Keratinocytes as initiators of inflammation. Lancet 1991;337:211-4. https://doi.org/10.1016/0140-6736(91)92168-2
  13. Nickoloff BJ, Turka LA. Keratinocytes: key immunocytes of the integument. Am J Pathol 1993;143:325-31.
  14. Johansen C. Generation and culturing of primary human keratinocytes from adult skin. J Vis Exp 2017;2017:1-5.
  15. Fuchs E, Raghavan S. Getting under the skin of epidermal morphogenesis. Nat Rev Genet 2002;3:199-209. https://doi.org/10.1038/nrg758
  16. Bos JD, Kapsenberg ML. The skin immune system its cellular constituents and their interactions. Immunol Today 1986;7:235-40. https://doi.org/10.1016/0167-5699(86)90111-8
  17. Nestle FO, Di Meglio P, Qin JZ, Nickoloff BJ. Skin immune sentinels in health and disease. Nat Rev Immunol 2009;9:679-91. https://doi.org/10.1038/nri2622
  18. Kim H Do, Ha SE, Kang JR, Park JK. Effect of Korean red ginseng extract on cell death responses in peroxynitrite-treated keratinocytes. J Ginseng Res 2010;34:205-11. https://doi.org/10.5142/jgr.2010.34.3.205
  19. Hillery M, Schwartz RJ. Time-averaged properties of the Jaynes-Cummings model: effects of detuning. Phys Rev A 1991;43:1506-11. https://doi.org/10.1103/PhysRevA.43.1506
  20. Cummings MM, Cummings Martin M. Interview by ole K. Harlem. Tidsskr Den Nor Laegeforening 1987;107:1151-3.
  21. Buek V. Jaynes-Cummings model with intensity-dependent coupling interacting with Holstein-Primakoff SU(1,1) coherent state. Phys Rev A 1989;39:3196-9. https://doi.org/10.1103/PhysRevA.39.3196
  22. Shumovsky AS, Kien F Le, Aliskenderov EI. Squeezing in the multiphoton Jaynes-Cummings model. Phys Lett A 1987;124:351-4. https://doi.org/10.1016/0375-9601(87)90025-9
  23. Chang JW, Park KH, Hwang HS, Shin YS, Oh YT, Kim CH. Protective effects of Korean red ginseng against radiation-induced apoptosis in human HaCaT keratinocytes. J Radiat Res 2014;55:245-56. https://doi.org/10.1093/jrr/rrt109
  24. Kim WY, Kim JM, Han SB, Lee SK, Kim ND, Park MK, Kim CK, Park JH. Steaming of ginseng at high temperature enhances biological activity. J Nat Prod 2000;63:1702-4. https://doi.org/10.1021/np990152b
  25. Lee H, Lee JY, Song KC, Kim J, Park JH, Chun KH, Hwang GS. Protective effect of processed Panax ginseng, sun ginseng on UVB-irradiated human skin keratinocyte and human dermal fibroblast. J Ginseng Res 2012;36:68-77. https://doi.org/10.5142/jgr.2012.36.1.68
  26. Homey B, Steinhoff M, Ruzicka T, Leung DYM. Cytokines and chemokines orchestrate atopic skin inflammation. J Allergy Clin Immunol 2006;118:178-89. https://doi.org/10.1016/j.jaci.2006.03.047
  27. Moreno AS, Mcphee R, Arruda LK, Howell MD. Targeting the T helper 2 inflammatory axis in atopic dermatitis. Int Arch Allergy Immunol 2016;171:71-80. https://doi.org/10.1159/000451083
  28. Bohm I, Bauer R. Th1-Zellen, Th2-Zellen und atopische Dermatitis. Hautarzt 1997;48:223-7. https://doi.org/10.1007/s001050050573
  29. Giustizieri ML, Mascia F, Frezzolini A, De Pita O, Chinni LM, Giannetti A, Girolomoni G, Pastore S. Keratinocytes from patients with atopic dermatitis and psoriasis show a distinct chemokine production profile in response to T cell-derived cytokines. J Allergy Clin Immunol 2001;107:871-7. https://doi.org/10.1067/mai.2001.114707
  30. Hong C-E, Lyu S-Y. Anti-inflammatory and anti-oxidative effects of Korean red ginseng extract in human keratinocytes. Immune Netw 2011;11:42. https://doi.org/10.4110/in.2011.11.1.42
  31. Park JH, Ahn EK, Ko HJ, Lee JY, Hwang SM, Ko SM, Oh JS. Korean red ginseng water extract alleviates atopic dermatitis-like inflammatory responses by negative regulation of mitogen-activated protein kinase signaling pathway in vivo. Biomed Pharmacother 2019;117:109066. https://doi.org/10.1016/j.biopha.2019.109066
  32. Oh Y, Lim HW, Kim K, Lim CJ. Ginsenoside Re improves skin barrier function in HaCaT keratinocytes under normal growth conditions. Biosci Biotechnol Biochem 2016;80:2165-7. https://doi.org/10.1080/09168451.2016.1206808
  33. Ahn S, Siddiqi MH, Aceituno VC, Simu SY, Zhang J, Jimenez Perez ZE, Kim Y-J, Yang D-C. Ginsenoside Rg5:Rk1 attenuates TNF-α/IFN-γ-induced production of thymus- and activation-regulated chemokine (TARC/CCL17) and LPS-induced NO production via downregulation of NF-κB/p38 MAPK/STAT1 signaling in human keratinocytes and macrophages. Vitr Cell Dev Biol - Anim 2016;52:287-95. https://doi.org/10.1007/s11626-015-9983-y
  34. Chung I, Lee J, Park YS, Lim Y, Chang DH, Park J, Hwang JS. Inhibitory mechanism of Korean red ginseng on GM-CSF expression in UVB-irradiated keratinocytes. J Ginseng Res 2015;39:322-30. https://doi.org/10.1016/j.jgr.2015.03.001
  35. Park YS, Lee JE, Park J Il, Myung C hwan, Lim YH, Park CK, Hwang JS. Inhibitory mechanism of ginsenoside Rh3 on granulocyte-macrophage colonystimulating factor expression in UV-B-irradiated murine SP-1 keratinocytes. J Ginseng Res 2020;44:274-81. https://doi.org/10.1016/j.jgr.2018.12.006
  36. Aitken GR, Henderson JR, Chang SC, McNeil CJ, Birch-Machin MA. Direct monitoring of UV-induced free radical generation in HaCaT keratinocytes. Clin Exp Dermatol 2007;32:722-7. https://doi.org/10.1111/j.1365-2230.2007.02474.x
  37. Kim MS, Oh GH, Kim MJ, Hwang JK. Fucosterol inhibits matrix metalloproteinase expression and promotes type-1 procollagen production in UVB-induced HaCaT cells. Photochem Photobiol 2013;89:911-8. https://doi.org/10.1111/php.12061
  38. Chae S, Piao MJ, Kang KA, Zhang R, Kim KC, Youn UJ, Nam K-W, Lee JH, Hyun JW. Inhibition of matrix metalloproteinase-1 induced by oxidative stress in human keratinocytes by mangiferin isolated from Anemarrhena asphodeloides. Biosci Biotechnol Biochem 2011;75:2321-5. https://doi.org/10.1271/bbb.110465
  39. Oh SJ, Oh Y, Ryu IW, Kim K, Lim CJ. Protective properties of ginsenoside Rb3 against UV-B radiation-induced oxidative stress in HaCaT keratinocytes. Biosci Biotechnol Biochem 2016;80:95-103. https://doi.org/10.1080/09168451.2015.1075862
  40. Kim S, Kang BY, Cho SY, Sung DS, Chang HK, Yeom MH, Kim DH, Sim YC, Lee YS. Compound K induces expression of hyaluronan synthase 2 gene in transformed human keratinocytes and increases hyaluronan in hairless mouse skin. Biochem Biophys Res Commun 2004;316:348-55. https://doi.org/10.1016/j.bbrc.2004.02.046
  41. Cichorek M, Wachulska M, Stasiewicz A, Tyminska A. Skin melanocytes: biology and development. Postep Dermatologii I Alergol 2013;30:30-41.
  42. Seiji M, Fitzpatrick TB. The reciprocal relationship between melanization and tyrosinase activity in melanosomes (melanin granules). J Biochem 1961;49:700-6. https://doi.org/10.1093/oxfordjournals.jbchem.a127360
  43. Simon JD, Peles D, Wakamatsu K, Ito S. Current challenges in understanding melanogenesis: bridging chemistry, biological control, morphology, and function. Pigment Cell Melanoma Res 2009;22:563-79. https://doi.org/10.1111/j.1755-148X.2009.00610.x
  44. Riley PA. Melanin. Int J Biochem Cell Biol 1997;29:1235-9. https://doi.org/10.1016/S1357-2725(97)00013-7
  45. Costin G-E, Hearing VJ. Human skin pigmentation: melanocytes modulate skin color in response to stress. FASEB J 2007;21:976-94. https://doi.org/10.1096/fj.06-6649rev
  46. Lee A-Y, Noh M. The regulation of epidermal melanogenesis via cAMP and/or PKC signaling pathways: insights for the development of hypopigmenting agents. Arch Pharm Res 2013;36:792-801. https://doi.org/10.1007/s12272-013-0130-6
  47. Kong YH, Jo YO, Cho C-W, Son D, Park S, Rho J, Choi SY. Inhibitory effects of cinnamic acid on melanin biosynthesis in skin. Biol Pharm Bull 2008;31:946-8. https://doi.org/10.1248/bpb.31.946
  48. Song M, Mun JH, Ko HC, Kim BS, Kim MB. Korean red ginseng powder in the treatment of melasma: an uncontrolled observational study. J Ginseng Res 2011;35:170175.
  49. Jiang R, Xu X-H, Wang K, Yang X-Z, Bi Y-F, Yan Y, Liu J-Z, Chen X-N, Wang Z-Z, Guo X-L, et al. Ethyl acetate extract from Panax ginseng C.A. Meyer and its main constituents inhibit alpha-melanocyte-stimulating hormone-induced melanogenesis by suppressing oxidative stress in B16 mouse melanoma cells. J Ethnopharmacol 2017;208:149-56. https://doi.org/10.1016/j.jep.2017.07.004
  50. Lee J-O, Kim E, Kim JH, Hong YH, Kim HG, Jeong D, Kim J, Kim SH, Park C, Seo DB, et al. Antimelanogenesis and skin-protective activities of Panax ginseng calyx ethanol extract. J Ginseng Res 2018;42:389-99. https://doi.org/10.1016/j.jgr.2018.02.007
  51. Saba E, Kim S-H, Lee YY, Park C-K, Oh J-W, Kim T-H, Kim H-K, Roh S-S, Rhee MH. Korean Red Ginseng extract ameliorates melanogenesis in humans and induces antiphotoaging effects in ultraviolet Beirradiated hairless mice. J Ginseng Res 2019.
  52. Oh CT, Park J Il, Jung YR, Joo YA, Shin DH, Cho HJ, Ahn SM, Lim YH, Park CK, Hwang JS. Inhibitory effect of Korean Red Ginseng on melanocyte proliferation and its possible implication in GM-CSF mediated signaling. J Ginseng Res 2013;37:389-400. https://doi.org/10.5142/jgr.2013.37.389
  53. Jeong Y-M, Oh WK, Tran TL, Kim W-K, Sung SH, Bae K, Lee S, Sung JH. Aglycone of Rh4 inhibits melanin synthesis in B16 melanoma cells: possible involvement of the protein kinase A pathway. Biosci Biotechnol Biochem 2013;77:119-25. https://doi.org/10.1271/bbb.120602
  54. Lee DY, Jeong YT, Jeong SC, Lee MK, Min JW, Lee JW, Kim GS, Lee SE, Ahn YS, Kang HC, et al. Melanin biosynthesis inhibition effects of ginsenoside Rb2 isolated from panax ginseng berry. J Microbiol Biotechnol 2015;25:2011-5. https://doi.org/10.4014/jmb.1505.05069
  55. Wang L, Lu A-P, Yu Z-L, Wong RNS, Bian Z-X, Kwok H-H, Yue PYK, Zhou LM, Chen H, Xu M, et al. The melanogenesis-inhibitory effect and the percutaneous formulation of ginsenoside Rb1. AAPS PharmSciTech 2014;15:1252-62. https://doi.org/10.1208/s12249-014-0138-3
  56. Lee SJ, Lee WJ, Chang SE, Lee G-Y. Antimelanogenic effect of ginsenoside Rg3 through extracellular signal-regulated kinase-mediated inhibition of microphthalmia-associated transcription factor. J Ginseng Res 2015;39:238-42. https://doi.org/10.1016/j.jgr.2015.01.001
  57. Kim JH, Baek EJ, Lee EJ, Yeom MH, Park JS, Lee KW, Kang NJ. Ginsenoside F1 attenuates hyperpigmentation in B16F10 melanoma cells by inducing dendrite retraction and activating Rho signalling. Exp Dermatol 2015;24:150-2. https://doi.org/10.1111/exd.12586
  58. Imokawa G. Autocrine and paracrine regulation of melanocytes in human skin and in pigmentary disorders. Pigment Cell Res 2004;17:96-110. https://doi.org/10.1111/j.1600-0749.2003.00126.x
  59. Yoshida A, Anand-Apte B, Zetter BR. Differential endothelial migration and proliferation to basic fibroblast growth factor and vascular endothelial growth factor. Growth Factors 1996;13:57-64. https://doi.org/10.3109/08977199609034566
  60. Hirobe T, Shinpo T, Higuchi K, Sano T. Life cycle of human melanocytes is regulated by endothelin-1 and stem cell factor in synergy with cyclic AMP and basic fibroblast growth factor. J Dermatol Sci 2010;57:123-31. https://doi.org/10.1016/j.jdermsci.2009.11.006
  61. Lee JE, Park J Il, Myung CH, Hwang JS. Inhibitory effects of ginsenosides on basic fibroblast growth factor-induced melanocyte proliferation. J Ginseng Res 2017;41:268-76. https://doi.org/10.1016/j.jgr.2016.05.001
  62. Kim YG, Sumiyoshi M, Sakanaka M, Kimura Y. Effects of ginseng saponins isolated from red ginseng on ultraviolet B-induced skin aging in hairless mice. Eur J Pharmacol 2009;602:148-56. https://doi.org/10.1016/j.ejphar.2008.11.021
  63. Hwang YP, Choi JH, Kim HG, Choi JM, Hwang SK, Chung YC, Jeong HG. Cultivated ginseng suppresses ultraviolet B-induced collagenase activation via mitogen-activated protein kinases and nuclear factor κB/activator protein-1-dependent signaling in human dermal fibroblasts. Nutr Res 2012;32:428-38. https://doi.org/10.1016/j.nutres.2012.04.005
  64. Hossen MJ, Hong YD, Baek KS, Yoo S, Hong YH, Kim JH, Lee JO, Kim D, Park J, Cho JY. In vitro antioxidative and anti-inflammatory effects of the compound K-rich fraction BIOGF1K, prepared from Panax ginseng. J Ginseng Res 2017;41:43-51. https://doi.org/10.1016/j.jgr.2015.12.009
  65. Hong YH, Kim D, Nam G, Yoo S, Han SY, Jeong SG, Kim E, Jeong D, Yoon K, Kim S, et al. Photoaging protective effects of BIOGF1K, a compound-K-rich fraction prepared from Panax ginseng. J Ginseng Res 2018;42:81-9. https://doi.org/10.1016/j.jgr.2017.01.002
  66. Liu X-Y, Hwang E, Park B, Ngo HTT, Xiao Y-K, Yi T-H. Ginsenoside C-mx isolated from notoginseng stem-leaf ginsenosides attenuates ultraviolet B-mediated photoaging in human dermal fibroblasts. Photochem Photobiol 2018;94:1040-8. https://doi.org/10.1111/php.12940
  67. Hwang E, Lee TH, Park S-Y, Yi TH, Kim SY. Enzyme-modified Panax ginseng inhibits UVB-induced skin aging through the regulation of procollagen type I and MMP-1 expression. Food Funct 2014;5:265-74. https://doi.org/10.1039/C3FO60418G
  68. Song KC, Chang T-S, Lee H, Kim J, Park JH, Hwang GS. Processed Panax ginseng, sun ginseng increases type I collagen by regulating MMP-1 and TIMP-1 expression in human dermal fibroblasts. J Ginseng Res 2012;36:61. https://doi.org/10.5142/jgr.2012.36.1.61
  69. Lee J, Jung E, Lee J, Huh S, Kim J, Park M, Park M, So J, Ham Y, Jung K, Hyun CG, et al. Panax ginseng induces human Type I collagen synthesis through activation of Smad signaling. J Ethnopharmacol 2007;109:29-34. https://doi.org/10.1016/j.jep.2006.06.008
  70. Kim WK, Song SY, Oh WK, Kaewsuwan S, Tran TL, Kim WS, Sung JH. Wound-healing effect of ginsenoside Rd from leaves of Panax ginseng via cyclic AMP-dependent protein kinase pathway. Eur J Pharmacol 2013;702:285-93. https://doi.org/10.1016/j.ejphar.2013.01.048
  71. Lee GY, Park KG, Namgoong S, Han SK, Jeong SH, Dhong ES, Kim WK. Effects of Panax ginseng extract on human dermal fibroblast proliferation and collagen synthesis. Int Wound J 2016;13:42-6. https://doi.org/10.1111/iwj.12530
  72. Park S, Ko E, Lee JH, Song Y, Cui C-H, Hou J, Jeon BM, Kim HS, Kim SC. Gypenoside LXXV promotes cutaneous wound healing in vivo by enhancing connective tissue growth factor levels via the glucocorticoid receptor pathway. Molecules 2019;24.
  73. Lee R, Lee N-E, Hwang H, Rhim H, Cho I-H, Nah S-Y. Ginseng gintonin enhances hyaluronic acid and collagen release from human dermal fibroblasts through lysophosphatidic acid receptor interaction. Molecules 2019;24.
  74. Driskell RR, Clavel C, Rendl M, Watt FM. Hair follicle dermal papilla cells at a glance. J Cell Sci 2011;124:1179-82. https://doi.org/10.1242/jcs.082446
  75. Park S, Shin WS, Ho J. Fructus panax ginseng extract promotes hair regeneration in C57BL/6 mice. J Ethnopharmacol 2011;138:340-4. https://doi.org/10.1016/j.jep.2011.08.013
  76. Baeg IH, So SH. The world ginseng market and the ginseng (Korea). J Ginseng Res 2013;37:1-7. https://doi.org/10.5142/jgr.2013.37.1

피인용 문헌

  1. Kahweol Exerts Skin Moisturizing Activities by Upregulating STAT1 Activity vol.22, pp.16, 2021, https://doi.org/10.3390/ijms22168864
  2. Wound Healing Effect of Gintonin Involves Lysophosphatidic Acid Receptor/Vascular Endothelial Growth Factor Signaling Pathway in Keratinocytes vol.22, pp.18, 2021, https://doi.org/10.3390/ijms221810155