DOI QR코드

DOI QR Code

Effect of Korean Red Ginseng on metabolic syndrome

  • Yoon, Sang Jun (Institute for Liver and Digestive Diseases, Hallym University) ;
  • Kim, Seul Ki (Institute for Liver and Digestive Diseases, Hallym University) ;
  • Lee, Na Young (Institute for Liver and Digestive Diseases, Hallym University) ;
  • Choi, Ye Rin (Institute for Liver and Digestive Diseases, Hallym University) ;
  • Kim, Hyeong Seob (Institute for Liver and Digestive Diseases, Hallym University) ;
  • Gupta, Haripriya (Institute for Liver and Digestive Diseases, Hallym University) ;
  • Youn, Gi Soo (Institute for Liver and Digestive Diseases, Hallym University) ;
  • Sung, Hotaik (School of Medicine, Kyungpook National University) ;
  • Shin, Min Jea (Institute for Liver and Digestive Diseases, Hallym University) ;
  • Suk, Ki Tae (Institute for Liver and Digestive Diseases, Hallym University)
  • Received : 2020.03.31
  • Accepted : 2020.11.02
  • Published : 2021.05.01

Abstract

Metabolic syndrome (MS) refers to a clustering of at least three of the following medical conditions: high blood pressure, abdominal obesity, hyperglycemia, low high-density lipoprotein level, and high serum triglycerides. MS is related to a wide range of diseases which includes obesity, diabetes, insulin resistance, cardiovascular disease, dyslipidemia, or non-alcoholic fatty liver disease. There remains an ongoing need for improved treatment strategies for MS. The most important risk factors are dietary pattern, genetics, old age, lack of exercise, disrupted biology, medication usage, and excessive alcohol consumption, but pathophysiology of MS has not been completely identified. Korean Red Ginseng (KRG) refers to steamed/dried ginseng, traditionally associated with beneficial effects such as anti-inflammation, anti-fatigue, anti-obesity, anti-oxidant, and anti-cancer effects. KRG has been often used in traditional medicine to treat multiple metabolic conditions. This paper summarizes the effects of KRG in MS and related diseases such as obesity, cardiovascular disease, insulin resistance, diabetes, dyslipidemia, or non-alcoholic fatty liver disease based on experimental research and clinical studies.

Keywords

Acknowledgement

This research was supported by Hallym University Research Fund, Korea National Research Foundation (NRF-2018M3A9F3020956 and NRF-2019R1I1A3A01060447), Basic Science Research Program (2020R1A6A1A03043026) through the NRF funded by the Ministry of Education, and Hallym University Research Fund 2018 (HURF-2018-67).

References

  1. Aguilar M, Bhuket T, Torres S, Liu B, Wong RJ. Prevalence of the metabolic syndrome in the United States, 2003-2012. JAMA 2015;313:1973-4. https://doi.org/10.1001/jama.2015.4260
  2. Nazara Otero CA, Pose Reino A, Pena Gonzalez E. [Metabolic syndrome: diagnosis and management. An update]. Clin Investig Arterioscler 2016;28:230-1.
  3. Lee HJ, Lee YH, Park SK, Kang ES, Kim HJ, Lee YC, Choi CS, Park SE, Ahn CW, Cha BS, et al. Korean red ginseng (Panax ginseng) improves insulin sensitivity and attenuates the development of diabetes in Otsuka Long-Evans Tokushima fatty rats. Metabolism 2009;58:1170-7. https://doi.org/10.1016/j.metabol.2009.03.015
  4. Park SJ, Nam J, Ahn CW, Kim Y. Anti-diabetic properties of different fractions of Korean red ginseng. J Ethnopharmacol 2019;236:220-30. https://doi.org/10.1016/j.jep.2019.01.044
  5. Park TY, Hong M, Sung H, Kim S, Suk KT. Effect of Korean Red Ginseng in chronic liver disease. J Ginseng Res 2017;41:450-5. https://doi.org/10.1016/j.jgr.2016.11.004
  6. Jeong H, Kim JW, Yang MS, Park C, Kim JH, Lim CW, Kim B. Beneficial effects of Korean red ginseng in the progression of non-alcoholic steatohepatitis via FABP4 modulation. Am J Chin Med 2018:1-27.
  7. Reaven GM. Syndrome X. Blood Press Suppl 1992;4:13-6.
  8. Alberti KG, Zimmet P, Shaw J, Group IDFETFC. The metabolic syndrome-a new worldwide definition. Lancet 2005;366:1059-62. https://doi.org/10.1016/S0140-6736(05)67402-8
  9. Taslim S, Tai ES, Taslim S, Tai E. The relevance of the metabolic syndrome. Annals Academy of Medicine Singapore 2009;38:29.
  10. Shin SS, Yoon M. Korean red ginseng (Panax ginseng) inhibits obesity and improves lipid metabolism in high fat diet-fed castrated mice. J Ethnopharmacol 2018;210:80-7. https://doi.org/10.1016/j.jep.2017.08.032
  11. Lemieux I. Energy partitioning in gluteal-femoral fat: does the metabolic fate of triglycerides affect coronary heart disease risk? Arterioscler Thromb Vasc Biol 2004;24:795-7. https://doi.org/10.1161/01.ATV.0000126485.80373.33
  12. Al-Goblan AS, Al-Alfi MA, Khan MZ. Mechanism linking diabetes mellitus and obesity. Diabetes Metab Syndr Obes 2014;7:587-91.
  13. Tsimikas S, Willerson JT, Ridker PM. C-reactive protein and other emerging blood biomarkers to optimize risk stratification of vulnerable patients. J Am Coll Cardiol 2006;47:C19-31.
  14. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 2003;112:1796-808. https://doi.org/10.1172/JCI200319246
  15. Ashcroft FM, Rorsman P. Diabetes mellitus and the beta cell: the last ten years. Cell 2012;148:1160-71. https://doi.org/10.1016/j.cell.2012.02.010
  16. Kahn SE, Hull RL, Utzschneider KM. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 2006;444:840-6. https://doi.org/10.1038/nature05482
  17. Eckel RH, Grundy SM, Zimmet PZ. The metabolic syndrome. Lancet 2005;365:1415-28. https://doi.org/10.1016/S0140-6736(05)66378-7
  18. Eckel RH. Lipoprotein lipase. A multifunctional enzyme relevant to common metabolic diseases. N Engl J Med 1989;320:1060-8. https://doi.org/10.1056/NEJM198904203201607
  19. Burroughs Pena MS, Rollins A. Environmental exposures and cardiovascular disease: a challenge for health and development in low- and middle-income countries. Cardiol Clin 2017;35:71-86. https://doi.org/10.1016/j.ccl.2016.09.001
  20. Lim KH, Ko D, Kim JH. Cardioprotective potential of Korean Red Ginseng extract on isoproterenol-induced cardiac injury in rats. J Ginseng Res 2013;37:273-82. https://doi.org/10.5142/jgr.2013.37.273
  21. National Cholesterol Education Program Expert Panel on Detection E. Treatment of high blood cholesterol in A. Third report of the national cholesterol education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III) final report. Circulation 2002;106:3143-421. https://doi.org/10.1161/circ.106.25.3143
  22. Cui J, Chen CH, Lo MT, Schork N, Bettencourt R, Gonzalez MP, Bhatt A, Hooker J, Shaffer K, Nelson KE, et al. Shared genetic effects between hepatic steatosis and fibrosis: a prospective twin study. Hepatology 2016;64:1547-58. https://doi.org/10.1002/hep.28674
  23. Atabek ME. Non-alcoholic fatty liver disease and metabolic syndrome in obese children. World J Gastroenterol 2011;17:4445-6. https://doi.org/10.3748/wjg.v17.i39.4445
  24. LaBrecque DR, Abbas Z, Anania F, Ferenci P, Khan AG, Goh KL, Hamid SS, Isakov V, Lizarzabal M, Penaranda MM, et al. World Gastroenterology Organisation global guidelines: nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. J Clin Gastroenterol 2014;48:467-73. https://doi.org/10.1097/MCG.0000000000000116
  25. Lee SM, Bae BS, Park HW, Ahn NG, Cho BG, Cho YL, Kwak YS. Characterization of Korean red ginseng (Panax ginseng Meyer): history, preparation method, and chemical composition. J Ginseng Res 2015;39:384-91. https://doi.org/10.1016/j.jgr.2015.04.009
  26. Yun TK. Panax ginseng-a non-organ-specific cancer preventive? Lancet Oncol 2001;2:49-55. https://doi.org/10.1016/S1470-2045(00)00196-0
  27. Park HM, Kim SJ, Mun AR, Go HK, Kim GB, Kim SZ, Jang SI, Lee SJ, Kim JS, Kang HS. Korean red ginseng and its primary ginsenosides inhibit ethanol-induced oxidative injury by suppression of the MAPK pathway in TIB-73 cells. J Ethnopharmacol 2012;141:1071-6. https://doi.org/10.1016/j.jep.2012.03.038
  28. Zhou P, Xie W, Sun Y, Dai Z, Li G, Sun G, Sun X. Ginsenoside Rb1 and mitochondria: a short review of the literature. Mol Cell Probes 2019;43:1-5. https://doi.org/10.1016/j.mcp.2018.12.001
  29. Chen J, Peng H, Ou-Yang X, He X. Research on the antitumor effect of ginsenoside Rg3 in B16 melanoma cells. Melanoma Research 2008;18:322-9. https://doi.org/10.1097/CMR.0b013e32830b3536
  30. He BC, Gao JL, Luo X, Luo J, Shen J, Wang L, Zhou Q, Wang YT, Luu HH, Haydon RC, et al. Ginsenoside Rg3 inhibits colorectal tumor growth through the down-regulation of Wnt/ss-catenin signaling. International Journal of Oncology 2011;38:437-45. https://doi.org/10.3892/ijo.2010.858
  31. Xu TM, Cui MH, Xin Y, Gu LP, Jiang X, Su MM, Wang DD, Wang WJ. Inhibitory effect of ginsenoside Rg3 on ovarian cancer metastasis. Chin Med J (Engl). 2008;121:1394-7. https://doi.org/10.1097/00029330-200808010-00012
  32. Kim HS, Lee EH, Ko SR, Choi KJ, Park JH, Im DS. Effects of ginsenosides Rg3 and Rh2 on the proliferation of prostate cancer cells. Archives of Pharmacal Research 2004;27:429-35. https://doi.org/10.1007/BF02980085
  33. Zhang Q, Kang X, Yang B, Wang J, Yang F. Antiangiogenic effect of capecitabine combined with ginsenoside Rg3 on breast cancer in mice. Cancer Biotherapy & Radiopharmaceuticals 2008;23:647-53. https://doi.org/10.1089/cbr.2008.0532
  34. Liu TG, Huang Y, Cui DD, Huang XB, Mao SH, Ji LL, Song HB, Yi C. Inhibitory effect of ginsenoside Rg3 combined with gemcitabine on angiogenesis and growth of lung cancer in mice. BMC Cancer 2009;9:250. https://doi.org/10.1186/1471-2407-9-250
  35. Zhang C, Liu L, Yu Y, Chen B, Tang C, Li X. Antitumor effects of ginsenoside Rg3 on human hepatocellular carcinoma cells. Molecular Medicine Reports 2012;5:1295-8. https://doi.org/10.3892/mmr.2012.808
  36. Lee HU, Bae EA, Han MJ, Kim DH. Hepatoprotective effect of 20(S)-ginsenosides Rg3 and its metabolite 20(S)-ginsenoside Rh2 on tert-butyl hydroperoxide-induced liver injury. Biol Pharmaceut Bull 2005;28:1992-4. https://doi.org/10.1248/bpb.28.1992
  37. Yuan HD, Kim do Y, Quan HY, Kim SJ, Jung MS, Chung SH. Ginsenoside Rg2 induces orphan nuclear receptor SHP gene expression and inactivates GSK3beta via AMP-activated protein kinase to inhibit hepatic glucose production in HepG2 cells. Chemico-biol Interact 2012;195:35-42. https://doi.org/10.1016/j.cbi.2011.10.006
  38. Yin J, Zhang H, Ye J. Traditional Chinese medicine in treatment of metabolic syndrome. Endocr Metab Immune Disord Drug Targets 2008;8:99-111. https://doi.org/10.2174/187153008784534330
  39. Lu JM, Yao Q, Chen C. Ginseng compounds: an update on their molecular mechanisms and medical applications. Curr Vasc Pharmacol 2009;7:293-302. https://doi.org/10.2174/157016109788340767
  40. Singh RK, Lui E, Wright D, Taylor A, Bakovic M. Alcohol extract of North American ginseng (Panax quinquefolius) reduces fatty liver, dyslipidemia, and other complications of metabolic syndrome in a mouse model. Can J Physiol Pharmacol 2017;95:1046-57. https://doi.org/10.1139/cjpp-2016-0510
  41. Kho MC, Lee YJ, Park JH, Kim HY, Yoon JJ, Ahn YM, Tan R, Park MC, Cha JD, Choi KM, et al. Fermented red ginseng potentiates improvement of metabolic dysfunction in metabolic syndrome rat models. Nutrients 2016;8.
  42. Lijnen HR, Maquoi E, Hansen LB, Van Hoef B, Frederix L, Collen D. Matrix metalloproteinase inhibition impairs adipose tissue development in mice. Arterioscler Thromb Vasc Biol 2002;22:374-9. https://doi.org/10.1161/hq0302.104522
  43. Brakenhielm E, Cao R, Gao B, Angelin B, Cannon B, Parini P, Cao Y. Angiogenesis inhibitor, TNP-470, prevents diet-induced and genetic obesity in mice. Circ Res 2004;94:1579-88. https://doi.org/10.1161/01.RES.0000132745.76882.70
  44. Cao Y. Angiogenesis modulates adipogenesis and obesity. J Clin Invest 2007;117:2362-8. https://doi.org/10.1172/JCI32239
  45. Lee SH, Lee HJ, Lee YH, Lee BW, Cha BS, Kang ES, Ahn CW, Park JS, Kim HJ, Lee EY, et al. Korean red ginseng (Panax ginseng) improves insulin sensitivity in high fat fed Sprague-Dawley rats. Phytother Res 2012;26:142-7. https://doi.org/10.1002/ptr.3610
  46. Lee H, Park D, Yoon M. Korean red ginseng (Panax ginseng) prevents obesity by inhibiting angiogenesis in high fat diet-induced obese C57BL/6J mice. Food Chem Toxicol 2013;53:402-8. https://doi.org/10.1016/j.fct.2012.11.052
  47. Kang KS, Yamabe N, Kim HY, Park JH, Yokozawa T. Therapeutic potential of 20(S)-ginsenoside Rg(3) against streptozotocin-induced diabetic renal damage in rats. Eur J Pharmacol 2008;591:266-72. https://doi.org/10.1016/j.ejphar.2008.06.077
  48. Li Z, Ji GE. Ginseng and obesity. J Ginseng Res 2018;42:1-8. https://doi.org/10.1016/j.jgr.2016.12.005
  49. Lee OH, Lee HH, Kim JH, Lee BY. Effect of ginsenosides Rg3 and Re on glucose transport in mature 3T3-L1 adipocytes. Phytother Res 2011;25:768-73. https://doi.org/10.1002/ptr.3322
  50. Zhang Y, Yu L, Cai W, Fan S, Feng L, Ji G, Huang C. Protopanaxatriol, a novel PPARgamma antagonist from Panax ginseng, alleviates steatosis in mice. Sci Rep 2014;4:7375. https://doi.org/10.1038/srep07375
  51. Komishon AM, Shishtar E, Ha V, Sievenpiper JL, de Souza RJ, Jovanovski E, Ho HV, Duvnjak LS, Vuksan V. The effect of ginseng (genus Panax) on blood pressure: a systematic review and meta-analysis of randomized controlled clinical trials. J Hum Hypertens 2016;30:619-26. https://doi.org/10.1038/jhh.2016.18
  52. Kwon DH, Bose S, Song MY, Lee MJ, Lim CY, Kwon BS, Kim HJ. Efficacy of Korean red ginseng by single nucleotide polymorphism in obese women: randomized, double-blind, placebo-controlled trial. J Ginseng Res 2012;36:176-89. https://doi.org/10.5142/jgr.2012.36.2.176
  53. Cho YH, Ahn SC, Lee SY, Jeong DW, Choi EJ, Kim YJ, Lee JG, Lee YH, Shin BC. Effect of Korean red ginseng on insulin sensitivity in non-diabetic healthy overweight and obese adults. Asia Pac J Clin Nutr 2013;22:365-71.
  54. Park BJ, Lee YJ, Lee HR, Jung DH, Na HY, Kim HB, Shim JY. Effects of Korean red ginseng on cardiovascular risks in subjects with metabolic syndrome: a double-blind randomized controlled study. Korean J Fam Med 2012;33:190-6. https://doi.org/10.4082/kjfm.2012.33.4.190
  55. Song MY, Kim BS, Kim H. Influence of Panax ginseng on obesity and gut microbiota in obese middle-aged Korean women. J Ginseng Res 2014;38:106-15. https://doi.org/10.1016/j.jgr.2013.12.004
  56. Hasani-Ranjbar S, Nayebi N, Larijani B, Abdollahi M. A systematic review of the efficacy and safety of herbal medicines used in the treatment of obesity. World J Gastroenterol: WJG 2009;15:3073. https://doi.org/10.3748/wjg.15.3073
  57. Kim K, Kim HY. Korean red ginseng stimulates insulin release from isolated rat pancreatic islets. J Ethnopharmacol 2008;120:190-5. https://doi.org/10.1016/j.jep.2008.08.006
  58. Luo JZ, Luo L. Ginseng on hyperglycemia: effects and mechanisms. Evid Based Complement Alternat Med 2009;6:423-7. https://doi.org/10.1093/ecam/nem178
  59. Jeong S, Yoon M. Fenofibrate inhibits adipocyte hypertrophy and insulin resistance by activating adipose PPARa in high fat diet-induced obese mice. Exp Mol Med 2009;41:397. https://doi.org/10.3858/emm.2009.41.6.045
  60. Lee JB, Yoon SJ, Lee SH, Lee MS, Jung H, Kim TD, Yoon SR, Choi I, Kim IS, Chung SW, et al. Ginsenoside Rg3 ameliorated HFD-induced hepatic steatosis through downregulation of STAT5-PPARgamma. J Endocrinol 2017;235:223-35. https://doi.org/10.1530/JOE-17-0233
  61. Hossain MA, Lee D, Kim B, Kang CW, Kim NS, Kim JH. Korean Red Ginseng attenuates type 2 diabetic cardiovascular dysfunction in Otsuka Long-Evans Tokushima Fatty rats. J Ginseng Res 2020;44:308-11. https://doi.org/10.1016/j.jgr.2018.12.003
  62. Park JK, Shim JY, Cho AR, Cho MR, Lee YJ. Korean red ginseng protects against mitochondrial damage and intracellular inflammation in an animal model of type 2 diabetes mellitus. J Med Food 2018;21:544-50. https://doi.org/10.1089/jmf.2017.4059
  63. Kim YJ, Zhang D, Yang DC. Biosynthesis and biotechnological production of ginsenosides. Biotechnol Adv 2015;33:717-35. https://doi.org/10.1016/j.biotechadv.2015.03.001
  64. Sato K, Mochizuki M, Saiki I, Yoo YC, Samukawa K, Azuma I. Inhibition of tumor angiogenesis and metastasis by a saponin of Panax ginseng, ginsenoside-Rb2. Biol Pharmaceut Bull 1994;17:635-9. https://doi.org/10.1248/bpb.17.635
  65. Jeong A, Lee HJ, Jeong SJ, Lee HJ, Lee EO, Bae H, Kim SH. Compound K inhibits basic fibroblast growth factor-induced angiogenesis via regulation of p38 mitogen activated protein kinase and AKT in human umbilical vein endothelial cells. Biol Pharmaceut Bull 2010;33:945-50. https://doi.org/10.1248/bpb.33.945
  66. Carmeliet P, Ferreira V, Breier G, Pollefeyt S, Kieckens L, Gertsenstein M, Fahrig M, Vandenhoeck A, Harpal K, Eberhardt C, et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 1996;380:435-9. https://doi.org/10.1038/380435a0
  67. Kawaguchi N, Toriyama K, Nicodemou-Lena E, Inou K, Torii S, Kitagawa Y. De novo adipogenesis in mice at the site of injection of basement membrane and basic fibroblast growth factor. Proc Natl Acad Sci U S A 1998;95:1062-6. https://doi.org/10.1073/pnas.95.3.1062
  68. Armstrong LC, Bornstein P. Thrombospondins 1 and 2 function as inhibitors of angiogenesis. Matrix Biol 2003;22:63-71. https://doi.org/10.1016/S0945-053X(03)00005-2
  69. Maquoi E, Munaut C, Colige A, Collen D, Lijnen HR. Modulation of adipose tissue expression of murine matrix metalloproteinases and their tissue inhibitors with obesity. Diabetes 2002;51:1093-101. https://doi.org/10.2337/diabetes.51.4.1093
  70. Chavey C, Mari B, Monthouel MN, Bonnafous S, Anglard P, Van Obberghen E, Tartare-Deckert S. Matrix metalloproteinases are differentially expressed in adipose tissue during obesity and modulate adipocyte differentiation. J Biol Chem 2003;278:11888-96. https://doi.org/10.1074/jbc.M209196200
  71. Bergers G, Brekken R, McMahon G, Vu TH, Itoh T, Tamaki K, Tanzawa K, Thorpe P, Itohara S, Werb Z, et al. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol 2000;2:737-44. https://doi.org/10.1038/35036374
  72. Park HY, Kwon HM, Lim HJ, Hong BK, Lee JY, Park BE, Jang Y, Cho SY, Kim HS. Potential role of leptin in angiogenesis: leptin induces endothelial cell proliferation and expression of matrix metalloproteinases in vivo and in vitro. Exp Mol Med 2001;33:95-102. https://doi.org/10.1038/emm.2001.17
  73. Cheon JM, Kim DI, Kim KS. Insulin sensitivity improvement of fermented Korean Red Ginseng (Panax ginseng) mediated by insulin resistance hallmarks in old-aged ob/ob mice. J Ginseng Res 2015;39:331-7. https://doi.org/10.1016/j.jgr.2015.03.005
  74. Park K, Kim Y, Kim J, Kang S, Park JS, Ahn CW, Nam JS. Supplementation with Korean red ginseng improves current perception threshold in Korean type 2 diabetes patients: a randomized, double-blind, placebo-controlled trial. J Diabetes Res 2020;2020:5295328.
  75. Bang H, Kwak JH, Ahn HY, Shin DY, Lee JH. Korean red ginseng improves glucose control in subjects with impaired fasting glucose, impaired glucose tolerance, or newly diagnosed type 2 diabetes mellitus. J Med Food 2014;17:128-34. https://doi.org/10.1089/jmf.2013.2889
  76. Lee KH, Bae IY, Park SI, Park JD, Lee HG. Antihypertensive effect of Korean Red Ginseng by enrichment of ginsenoside Rg3 and arginine-fructose. J Ginseng Res 2016;40:237-44. https://doi.org/10.1016/j.jgr.2015.08.002
  77. Lu HF, Lai YH, Huang HC, Lee IJ, Lin LC, Liu HK, Tien HH, Huang C. Ginseng-plus-Bai-Hu-Tang ameliorates diet-induced obesity, hepatic steatosis, and insulin resistance in mice. J Ginseng Res 2020;44:238-46. https://doi.org/10.1016/j.jgr.2018.10.005
  78. Nagar H, Choi S, Jung SB, Jeon BH, Kim CS. Rg3-enriched Korean Red Ginseng enhances blood pressure stability in spontaneously hypertensive rats. Integr Med Res 2016;5:223-9. https://doi.org/10.1016/j.imr.2016.05.006
  79. Kim JH. Cardiovascular Diseases and Panax ginseng: A Review on Molecular Mechanisms and Medical Applications. J Ginseng Res. 2012;36(1):16-26. https://doi.org/10.5142/jgr.2012.36.1.16
  80. Samukawa K, Suzuki Y, Ohkubo N, Aoto M, Sakanaka M, Mitsuda N. Protective effect of ginsenosides Rg(2) and Rh(1) on oxidation-induced impairment of erythrocyte membrane properties. Biorheology 2008;45:689-700. https://doi.org/10.3233/BIR-2008-0516
  81. Li XT, Chen R, Jin LM, Chen HY. Regulation on energy metabolism and protection on mitochondria of Panax ginseng polysaccharide. Am J Chin Med 2009;37:1139-52. https://doi.org/10.1142/S0192415X09007454
  82. Li J, Ichikawa T, Jin Y, Hofseth LJ, Nagarkatti P, Nagarkatti M, Windust A, Cui T. An essential role of Nrf2 in American ginseng-mediated anti-oxidative actions in cardiomyocytes. J Ethnopharmacol 2010;130:222-30. https://doi.org/10.1016/j.jep.2010.03.040
  83. Sohn SH, Kim SK, Kim YO, Kim HD, Shin YS, Yang SO, Kim SY, Lee SW. A comparison of antioxidant activity of Korean White and Red Ginsengs on H2O2-induced oxidative stress in HepG2 hepatoma cells. J Ginseng Res 2013;37:442-50. https://doi.org/10.5142/jgr.2013.37.442
  84. Chen X. Cardiovascular protection by ginsenosides and their nitric oxide releasing action. Clin Exp Pharmacol Physiol 1996;23:728-32. https://doi.org/10.1111/j.1440-1681.1996.tb01767.x
  85. Zhou W, Chai H, Lin PH, Lumsden AB, Yao Q, Chen C. Ginsenoside Rb1 blocks homocysteine-induced endothelial dysfunction in porcine coronary arteries. J Vasc Surg 2005;41:861-8. https://doi.org/10.1016/j.jvs.2005.01.054
  86. Wang X, Chai H, Yao Q, Chen C. Molecular mechanisms of HIV protease inhibitor-induced endothelial dysfunction. J Acquir Immune Defic Syndr 2007;44:493-9. https://doi.org/10.1097/QAI.0b013e3180322542
  87. Xie JT, Shao ZH, Vanden Hoek TL, Chang WT, Li J, Mehendale S, Wang CZ, Hsu CW, Becker LB, Yin JJ, et al. Antioxidant effects of ginsenoside Re in cardiomyocytes. Eur J Pharmacol 2006;532:201-7. https://doi.org/10.1016/j.ejphar.2006.01.001
  88. Deng HL, Zhang JT. Anti-lipid peroxilative effect of ginsenoside Rb1 and Rg1. Chin Med J (Engl). 1991;104:395-8.
  89. Wu T, Sun J, Kagota S, Maruyama K, Wakuda H, Shinozuka K. Panax notoginseng saponins ameliorate impaired arterial vasodilation in SHRSP.ZLepr(fa)/lzmDmcr rats with metabolic syndrome. Clin Exp Pharmacol Physiol 2016;43:459-67. https://doi.org/10.1111/1440-1681.12547
  90. Lee HW, Lim HJ, Jun JH, Choi J, Lee MS. Ginseng for treating hypertension: a systematic review and meta-analysis of double blind, randomized, placebo-controlled trials. Curr Vasc Pharmacol 2017;15:549-56.
  91. Jovanovski E, Lea Duvnjak S, Komishon A, Au-Yeung F, Zurbau A, Jenkins AL, Sung MK, Josse R, Vuksan V. Vascular effects of combined enriched Korean Red ginseng (Panax Ginseng) and American ginseng (Panax Quinquefolius) administration in individuals with hypertension and type 2 diabetes: a randomized controlled trial. Complement Ther Med 2020;49:102338. https://doi.org/10.1016/j.ctim.2020.102338
  92. Jovanovski E, Bateman EA, Bhardwaj J, Fairgrieve C, Mucalo I, Jenkins AL, Vuksan V. Effect of Rg3-enriched Korean red ginseng (Panax ginseng) on arterial stiffness and blood pressure in healthy individuals: a randomized controlled trial. J Am Soc Hypertens 2014;8:537-41. https://doi.org/10.1016/j.jash.2014.04.004
  93. Hernandez-Garcia D, Granado-Serrano AB, Martin-Gari M, Naudi A, Serrano JC. Efficacy of Panax ginseng supplementation on blood lipid profile. A meta-analysis and systematic review of clinical randomized trials. J Ethnopharmacol 2019;243:112090. https://doi.org/10.1016/j.jep.2019.112090
  94. Hong SH, Suk KT, Choi SH, Lee JW, Sung HT, Kim CH, Kim EJ, Kim MJ, Han SH, Kim MY, et al. Anti-oxidant and natural killer cell activity of Korean red ginseng (Panax ginseng) and urushiol (Rhus vernicifera Stokes) on non-alcoholic fatty liver disease of rat. Food Chem Toxicol 2013;55:586-91. https://doi.org/10.1016/j.fct.2013.01.022
  95. Kim H, Hong MK, Choi H, Moon HS, Lee HJ. Chemopreventive effects of Korean red ginseng extract on rat hepatocarcinogenesis. J Cancer 2015;6:1-8. https://doi.org/10.7150/jca.10353
  96. Kim JC, Jeon JY, Yang WS, Kim CH, Eom DW. Combined amelioration of ginsenoside (Rg1, Rb1, and Rg3)-enriched Korean red ginseng and probiotic lactobacillus on non-alcoholic fatty liver disease. Curr Pharmaceut Biotechnol 2019;20:222-31. https://doi.org/10.2174/1389201020666190311143554
  97. Nan B, Liu YL, You Y, Li WC, Fan JJ, Wang YS, Piao CH, Hu DL, Lu GJ, Wang YH. Protective effects of enhanced minor ginsenosides in Lactobacillus fermentum KP-3-fermented ginseng in mice fed a high fat diet. Food Funct 2018;9:6020-8. https://doi.org/10.1039/C8FO01056K
  98. Kim DG, Jung KH, Lee DG, Yoon JH, Choi KS, Kwon SW, Shen HM, Morgan MJ, Hong SS, Kim YS. 20(S)-Ginsenoside Rg3 is a novel inhibitor of autophagy and sensitizes hepatocellular carcinoma to doxorubicin. Oncotarget 2014;5:4438-51. https://doi.org/10.18632/oncotarget.2034
  99. Hong M, Lee YH, Kim S, Suk KT, Bang CS, Yoon JH, Baik GH, Kim DJ, Kim MJ. Anti-inflammatory and antifatigue effect of Korean Red Ginseng in patients with nonalcoholic fatty liver disease. J Ginseng Res 2016;40:203-10. https://doi.org/10.1016/j.jgr.2015.07.006
  100. Buettner C, Yeh GY, Phillips RS, Mittleman MA, Kaptchuk TJ. Systematic review of the effects of ginseng on cardiovascular risk factors. Ann Pharmacother 2006;40:83-95. https://doi.org/10.1345/aph.1G216
  101. Pascual G, Fong AL, Ogawa S, Gamliel A, Li AC, Perissi V, Rose DW, Willson TM, Rosenfeld MG, Glass CK. A SUMOylation-dependent pathway mediates transrepression of inflammatory response genes by PPAR-gamma. Nature 2005;437:759-63. https://doi.org/10.1038/nature03988
  102. Lee CH, Kim JH. A review on the medicinal potentials of ginseng and ginsenosides on cardiovascular diseases. J Ginseng Res 2014;38:161-6. https://doi.org/10.1016/j.jgr.2014.03.001
  103. Cheng B, Gao W, Wu X, Zheng M, Yu Y, Song C, Miao W, Yang Z, He Y, Liu C, et al. Ginsenoside Rg2 ameliorates high-fat diet-induced metabolic disease through SIRT1. J Agric Food Chem 2020;68:4215-26. https://doi.org/10.1021/acs.jafc.0c00833
  104. Lee H, Kong G, Tran Q, Kim C, Park J, Park J. Relationship between ginsenoside Rg3 and metabolic syndrome. Front Pharmacol 2020;11:130. https://doi.org/10.3389/fphar.2020.00130
  105. Wei Y, Yang H, Zhu C, Deng J, Fan D. Ginsenoside Rg5 relieves type 2 diabetes by improving hepatic insulin resistance in db/db mice. J Funct Foods 2020:104014.
  106. Li JB, Zhang R, Han X, Piao CL. Ginsenoside Rg1 inhibits dietary-induced obesity and improves obesity-related glucose metabolic disorders. Braz J Med Biol Res 2018;51:e7139. https://doi.org/10.1590/1414-431x20177139
  107. Hwang JT, Kim SH, Lee MS, Kim SH, Yang HJ, Kim MJ, Kim HS, Ha J, Kim MS, Kwon DY. Anti-obesity effects of ginsenoside Rh2 are associated with the activation of AMPK signaling pathway in 3T3-L1 adipocyte. Biochem Biophys Res Commun 2007;364:1002-8. https://doi.org/10.1016/j.bbrc.2007.10.125
  108. Jeong YJ, Hwang MJ, Hong CO, Yoo DS, Kim JS, Kim DY, Lee KW. Anti-hyperglycemic and hypolipidemic effects of black ginseng extract containing increased Rh4, Rg5, and Rk1 content in muscle and liver of type 2 diabetic db/db mice. Food Sci Biotechnol 2020;29:1101-12. https://doi.org/10.1007/s10068-020-00753-3

Cited by

  1. Ginsenoside Rb1 ameliorates Glycemic Disorder in Mice With High Fat Diet-Induced Obesity via Regulating Gut Microbiota and Amino Acid Metabolism vol.12, 2021, https://doi.org/10.3389/fphar.2021.756491
  2. Positive influence of gut microbiota on the effects of Korean red ginseng in metabolic syndrome: a randomized, double-blind, placebo-controlled clinical trial vol.12, pp.2, 2021, https://doi.org/10.1007/s13167-021-00243-4
  3. Wound Healing Effect of Gintonin Involves Lysophosphatidic Acid Receptor/Vascular Endothelial Growth Factor Signaling Pathway in Keratinocytes vol.22, pp.18, 2021, https://doi.org/10.3390/ijms221810155
  4. Hesperidin and Chlorogenic Acid Synergistically Inhibit the Growth of Breast Cancer Cells via Estrogen Receptor/Mitochondrial Pathway vol.11, pp.9, 2021, https://doi.org/10.3390/life11090950
  5. Effect of Lactic Acid Bacteria on the Pharmacokinetics and Metabolism of Ginsenosides in Mice vol.13, pp.9, 2021, https://doi.org/10.3390/pharmaceutics13091496
  6. Network Pharmacology of Ginseng (Part II): The Differential Effects of Red Ginseng and Ginsenoside Rg5 in Cancer and Heart Diseases as Determined by Transcriptomics vol.14, pp.10, 2021, https://doi.org/10.3390/ph14101010