DOI QR코드

DOI QR Code

Review of ginsenosides targeting mitochondrial function to treat multiple disorders: Current status and perspectives

  • Huang, Qingxia (Jilin Ginseng Academy, Changchun University of Chinese Medicine) ;
  • Gao, Song (Jilin Xiuzheng Pharmaceutical New Drug Development Co., Ltd) ;
  • Zhao, Daqing (Jilin Ginseng Academy, Changchun University of Chinese Medicine) ;
  • Li, Xiangyan (Jilin Ginseng Academy, Changchun University of Chinese Medicine)
  • 투고 : 2020.04.22
  • 심사 : 2020.12.09
  • 발행 : 2021.05.01

초록

Mitochondrial dysfunction contributes to the pathogenesis and prognosis of many common disorders, including neurodegeneration, stroke, myocardial infarction, tumor, and metabolic diseases. Ginsenosides, the major bioactive constituents of Panax ginseng (P. ginseng), have been reported to play beneficial roles in the molecular pathophysiology of these diseases by targeting mitochondrial dysfunction. In this review, we first introduce the types of ginsenosides and basic mitochondrial functions. Then, recent findings are summarized on different ginsenosides targeting mitochondria and their key signaling pathways for the treatment of multiple diseases, including neurological disorders, cancer, heart disease, hyperglycemia, and inflammation are summarized. This review may explain the common targets of ginsenosides against multiple diseases and provide new insights into the underlying mechanisms, facilitating research on the clinical application of P. ginseng.

키워드

과제정보

This work was supported by the National Key Research and Development Program of China (No. 2017YFC1702103, 2019 YFC1709901), Regional Innovation and Development Joint Fund (U19A2013), National Natural Science Foundation of China (81602257), the Science and Technology Development Plan Project of Jilin Province (No. 20190101010JH, 202002053JC)), Jilin Provincial Administration of Traditional Chinese Medicine (2020168) and the Project for Science and Technology Bureau of Changchun (No. 18YJ013).

참고문헌

  1. Qi HY, Li L, Ma H. Cellular stress response mechanisms as therapeutic targets of ginsenosides. Medicinal Research Reviews 2018;38:625-54. https://doi.org/10.1002/med.21450
  2. Zheng Q, Bao X-Y, Zhu P-C, Tong Q, Zheng G-Q, Wang Y. Ginsenoside Rb1 for myocardial ischemia/reperfusion injury: preclinical evidence and possible mechanisms. Oxidative Medicine and Cellular Longevity 2017;(2017):1-14.
  3. Wang C, Liu J, Deng J, Wang J, Weng W, Chu H, et al. Advances in the chemistry, pharmacological diversity, and metabolism of 20(R)-ginseng saponins. Journal of Ginseng Research 2020;44:14-23. https://doi.org/10.1016/j.jgr.2019.01.005
  4. Boyman L, Karbowski M, Lederer WJ. Regulation of mitochondrial ATP production: Ca(2+) signaling and quality control. Trends in Molecular Medicine 2020;26:21-39. https://doi.org/10.1016/j.molmed.2019.10.007
  5. Bock FJ, Tait SWG. Mitochondria as multifaceted regulators of cell death. Nature Reviews Molecular Cell Biology 2020;21:85-100. https://doi.org/10.1038/s41580-019-0173-8
  6. Rajabian A, Rameshrad M, Hosseinzadeh H. Therapeutic potential of Panax ginseng and its constituents, ginsenosides and gintonin, in neurological and neurodegenerative disorders: a patent review. Expert Opinion on Therapeutic Patents 2019;29:55-72. https://doi.org/10.1080/13543776.2019.1556258
  7. Jin X, Zhou J, Zhang Z, Lv H. The combined administration of parthenolide and ginsenoside CK in long circulation liposomes with targeted tLyp-1 ligand induce mitochondria-mediated lung cancer apoptosis. Artificial Cells, Nanomedicine, and Biotechnology 2018;46:S931-42.
  8. Zhou P, Xie W, Sun Y, Dai Z, Li G, Sun G, et al. Ginsenoside Rb1 and mitochondria: a short review of the literature. Molecular and Cellular Probes 2019;43:1-5. https://doi.org/10.1016/j.mcp.2018.12.001
  9. Liu C, Wang J, Yang Y, Liu X, Zhu Y, Zou J, et al. Ginsenoside Rd ameliorates colitis by inducing p62-driven mitophagy-mediated NLRP3 inflammasome inactivation in mice. Biochemical Pharmacology 2018;155:366-79. https://doi.org/10.1016/j.bcp.2018.07.010
  10. Ong WY, Farooqui T, Koh HL, Farooqui AA, Ling EA. Protective effects of ginseng on neurological disorders. Frontiers in Aging Neuroscience 2015;7:129.
  11. Baek SH, Bae ON, Park JH. Recent methodology in ginseng analysis. J Ginseng Res 2012;36:119-34. https://doi.org/10.5142/jgr.2012.36.2.119
  12. Liu L, Anderson GA, Fernandez TG, Dore S. Efficacy and mechanism of Panax ginseng in experimental stroke. Frontiers in Neuroscience 2019;13:294. https://doi.org/10.3389/fnins.2019.00294
  13. Pfanner N, Warscheid B, Wiedemann N. Mitochondrial proteins: from biogenesis to functional networks. Nature Reviews Molecular Cell Biology 2019;20:267-84. https://doi.org/10.1038/s41580-018-0092-0
  14. Murphy MP, Hartley RC. Mitochondria as a therapeutic target for common pathologies. Nature Reviews Drug Discovery 2018;17:865-86. https://doi.org/10.1038/nrd.2018.174
  15. Lin J, Huang HF, Yang SK, Duan J, Qu SM, Yuan B, et al. The effect of Ginsenoside Rg1 in hepatic ischemia reperfusion (I/R) injury ameliorates ischemia-reperfusion-induced liver injury by inhibiting apoptosis. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 2020;129:110398. https://doi.org/10.1016/j.biopha.2020.110398
  16. Hou J, Yun Y, Xue J, Jeon B, Kim S. Doxorubicin-induced normal breast epithelial cellular aging and its related breast cancer growth through mitochondrial autophagy and oxidative stress mitigated by ginsenoside Rh2. Phytotherapy Research : PTR 2020;34:1659-69. https://doi.org/10.1002/ptr.6636
  17. Diaz-Garcia CM, Mongeon R, Lahmann C, Koveal D, Zucker H, Yellen G. Neuronal stimulation triggers neuronal glycolysis and not lactate uptake. Cell Metabolism 2017;26:361-374 e4. https://doi.org/10.1016/j.cmet.2017.06.021
  18. Siddiqui SA, Dutta S, Tang A, Liu L, Ross CA, Baldo MA. Magnetic domain wall based synaptic and activation function generator for neuromorphic accelerators. Nano Letters 2020;20:1033-40. https://doi.org/10.1021/acs.nanolett.9b04200
  19. Liu Y, Zhang RY, Zhao J, Dong Z, Feng DY, Wu R, et al. Ginsenoside Rd protects SH-SY5Y cells against 1-Methyl-4-phenylpyridinium induced injury. International Journal of Molecular Sciences 2015;16:14395-408. https://doi.org/10.3390/ijms160714395
  20. Zhang Y, Yang X, Wang S, Song S. Ginsenoside Rg3 prevents cognitive impairment by improving mitochondrial dysfunction in the rat model of alzheimer's disease. Journal of Agricultural and Food Chemistry 2019;67:10048-58. https://doi.org/10.1021/acs.jafc.9b03793
  21. Ye R, Kong X, Yang Q, Zhang Y, Han J, Zhao G. Ginsenoside Rd attenuates redox imbalance and improves stroke outcome after focal cerebral ischemia in aged mice. Neuropharmacology 2011;61:815-24. https://doi.org/10.1016/j.neuropharm.2011.05.029
  22. Gonzalez-Burgos E, Fernandez-Moriano C, Lozano R, Iglesias I, Gomez-Serranillos MP. Ginsenosides Rd and Re co-treatments improve rotenone-induced oxidative stress and mitochondrial impairment in SH-SY5Y neuroblastoma cells. Food and Chemical Toxicology : An International Journal Published for the British Industrial Biological Research Association 2017;109:38-47. https://doi.org/10.1016/j.fct.2017.08.013
  23. Shim JS, Song MY, Yim SV, Lee SE, Park KS. Global analysis of ginsenoside Rg1 protective effects in beta-amyloid-treated neuronal cells. Journal of Ginseng Research 2017;41:566-71. https://doi.org/10.1016/j.jgr.2016.12.003
  24. Wu J, Yang H, Zhao Q, Zhang X, Lou Y. Ginsenoside Rg1 exerts a protective effect against Abeta(2)(5)(-)(3)(5)-induced toxicity in primary cultured rat cortical neurons through the NF-kappaB/NO pathway. International Journal of Molecular Medicine 2016;37:781-8. https://doi.org/10.3892/ijmm.2016.2485
  25. Liu M, Bai X, Yu S, Zhao W, Qiao J, Liu Y, et al. Ginsenoside Re inhibits ROS/ASK-1 dependent mitochondrial apoptosis pathway and activation of nrf2-antioxidant response in beta-amyloid-challenged SH-SY5Y cells. Molecules 2019;24:25. https://doi.org/10.3390/molecules24010025
  26. Yang LX, Zhang X, Zhao G. Ginsenoside Rd attenuates DNA damage by increasing expression of DNA glycosylase endonuclease VIII-like proteins after focal cerebral ischemia. Chinese Medical Journal 2016;129:1955-62. https://doi.org/10.4103/0366-6999.187851
  27. Ye R, Zhang X, Kong X, Han J, Yang Q, Zhang Y, et al. Ginsenoside Rd attenuates mitochondrial dysfunction and sequential apoptosis after transient focal ischemia. Neuroscience 2011;178:169-80. https://doi.org/10.1016/j.neuroscience.2011.01.007
  28. Xu M, Ma Q, Fan C, Chen X, Zhang H, Tang M. Ginsenosides Rb1 and Rg1 protect primary cultured astrocytes against oxygen-glucose deprivation/reoxygenation-induced injury via improving mitochondrial function. International Journal of Molecular Sciences 2019;20:23. https://doi.org/10.3390/ijms20010023
  29. Tran TV, Shin EJ, Dang DK, Ko SK, Jeong JH, Nah SY, et al. Ginsenoside Re protects against phencyclidine-induced behavioral changes and mitochondrial dysfunction via interactive modulation of glutathione peroxidase-1 and NADPH oxidase in the dorsolateral cortex of mice. Food and Chemical Toxicology : An International Journal Published for the British Industrial Biological Research Association 2017;110:300-15. https://doi.org/10.1016/j.fct.2017.10.019
  30. Shin EJ, Shin SW, Nguyen TT, Park DH, Wie MB, Jang CG, et al. Ginsenoside Re rescues methamphetamine-induced oxidative damage, mitochondrial dysfunction, microglial activation, and dopaminergic degeneration by inhibiting the protein kinase Cdelta gene. Molecular Neurobiology 2014;49:1400-21. https://doi.org/10.1007/s12035-013-8617-1
  31. Nam Y, Wie MB, Shin EJ, Nguyen TT, Nah SY, Ko SK, et al. Ginsenoside Re protects methamphetamine-induced mitochondrial burdens and proapoptosis via genetic inhibition of protein kinase C delta in human neuroblastoma dopaminergic SH-SY5Y cell lines. Journal of Applied Toxicology : JAT 2015;35:927-44. https://doi.org/10.1002/jat.3093
  32. Moon JH, Lee JH, Lee YJ, Park SY. Autophagy flux induced by ginsenoside-Rg3 attenuates human prion protein-mediated neurotoxicity and mitochondrial dysfunction. Oncotarget 2016;7:85697-708. https://doi.org/10.18632/oncotarget.13730
  33. Bak DH, Kim HD, Kim YO, Park CG, Han SY, Kim JJ. Neuroprotective effects of 20(S)-protopanaxadiol against glutamate-induced mitochondrial dysfunction in PC12 cells. International Journal of Molecular Medicine 2016;37:378-86. https://doi.org/10.3892/ijmm.2015.2440
  34. Jiang GZ, Li JC. Protective effects of ginsenoside Rg1 against colistin sulfateinduced neurotoxicity in PC12 cells. Cell Mol Neurobiol 2014;34:167-72. https://doi.org/10.1007/s10571-013-9998-4
  35. Liu D, Zhang H, Gu W, Liu Y, Zhang M. Neuroprotective effects of ginsenoside Rb1 on high glucose-induced neurotoxicity in primary cultured rat hippocampal neurons. PLoS One 2013;8:e79399. https://doi.org/10.1371/journal.pone.0079399
  36. Fernandez-Moriano C, Gonzalez-Burgos E, Iglesias I, Lozano R, Gomez-Serranillos MP. Evaluation of the adaptogenic potential exerted by ginsenosides Rb1 and Rg1 against oxidative stress-mediated neurotoxicity in an in vitro neuronal model. PloS One 2017;12:e0182933. https://doi.org/10.1371/journal.pone.0182933
  37. Oh JM, Kim E, Chun S. Ginsenoside compound K induces ros-mediated apoptosis and autophagic inhibition in human neuroblastoma cells in vitro and in vivo. International Journal of Molecular Sciences 2019;20:21. https://doi.org/10.3390/ijms20010021
  38. Zheng ZZ, Ming YL, Chen LH, Zheng GH, Liu SS, Chen QX. Compound K-induced apoptosis of human hepatocellular carcinoma MHCC97-H cells in vitro. Oncol Rep 2014;32:325-31. https://doi.org/10.3892/or.2014.3171
  39. Lee IK, Kang KA, Lim CM, Kim KC, Kim HS, Kim DH, et al. Compound K, a metabolite of ginseng saponin, induces mitochondria-dependent and caspase-dependent apoptosis via the generation of reactive oxygen species in human colon cancer cells. International Journal of Molecular Sciences 2010;11:4916-31. https://doi.org/10.3390/ijms11124916
  40. Maryanovich M, Gross A. A ROS rheostat for cell fate regulation. Trends in Cell Biology 2013;23:129-34. https://doi.org/10.1016/j.tcb.2012.09.007
  41. Hu C, Song G, Zhang B, Liu Z, Chen R, Zhang H, et al. Intestinal metabolite compound K of panaxoside inhibits the growth of gastric carcinoma by augmenting apoptosis via Bid-mediated mitochondrial pathway. Journal of Cellular and Molecular Medicine 2012;16:96-106. https://doi.org/10.1111/j.1582-4934.2011.01278.x
  42. Wang H, Jiang D, Liu J, Ye S, Xiao S, Wang W, et al. Compound K induces apoptosis of bladder cancer T24 cells via reactive oxygen species-mediated p38 MAPK pathway. Cancer Biotherapy & Radiopharmaceuticals 2013;28:607-14. https://doi.org/10.1089/cbr.2012.1468
  43. Bian S, Zhao Y, Li F, Lu S, Wang S, Bai X, et al. 20(S)-Ginsenoside Rg3 promotes HeLa cell apoptosis by regulating autophagy. Molecules 2019;24:20. https://doi.org/10.3390/molecules24010020
  44. Li Y, Yang T, Li J, Hao HL, Wang SY, Yang J, et al. Inhibition of multiple myeloma cell proliferation by ginsenoside Rg3 via reduction in the secretion of IGF-1. Molecular Medicine Reports 2016;14:2222-30. https://doi.org/10.3892/mmr.2016.5475
  45. Kim BM, Kim DH, Park JH, Na HK, Surh YJ. Ginsenoside Rg3 induces apoptosis of human breast cancer (MDA-MB-231) cells. Journal of Cancer Prevention 2013;18:177-85. https://doi.org/10.15430/JCP.2013.18.2.177
  46. Yuan HD, Quan HY, Zhang Y, Kim SH, Chung SH. 20(S)-Ginsenoside Rg3-induced apoptosis in HT-29 colon cancer cells is associated with AMPK signaling pathway. Mol Med Rep 2010;3:825-31. https://doi.org/10.3892/mmr.2010.328
  47. Zhang F, Li M, Wu X, Hu Y, Cao Y, Wang X, et al. 20(S)-ginsenoside Rg3 promotes senescence and apoptosis in gallbladder cancer cells via the p53 pathway. Drug Design, Development and Therapy 2015;9:3969-87.
  48. Park HM, Kim SJ, Kim JS, Kang HS. Reactive oxygen species mediated ginsenoside Rg3- and Rh2-induced apoptosis in hepatoma cells through mitochondrial signaling pathways. Food and Chemical Toxicology : An International Journal Published for the British Industrial Biological Research Association 2012;50:2736-41. https://doi.org/10.1016/j.fct.2012.05.027
  49. Xia T, Wang YN, Zhou CX, Wu LM, Liu Y, Zeng QH, et al. Ginsenoside Rh2 and Rg3 inhibit cell proliferation and induce apoptosis by increasing mitochondrial reactive oxygen species in human leukemia Jurkat cells. Molecular Medicine Reports 2017;15:3591-8. https://doi.org/10.3892/mmr.2017.6459
  50. Xia T, Wang J, Wang Y, Wang Y, Cai J, Wang M, et al. Inhibition of autophagy potentiates anticancer property of 20(S)-ginsenoside Rh2 by promoting mitochondria-dependent apoptosis in human acute lymphoblastic leukaemia cells. Oncotarget 2016;7:27336-49. https://doi.org/10.18632/oncotarget.8285
  51. Chen F, Deng Z, Xiong Z, Zhang B, Yang J, Hu J. A ROS-mediated lysosomalmitochondrial pathway is induced by ginsenoside Rh2 in hepatoma HepG2 cells. Food & Function 2015;6:3828-37. https://doi.org/10.1039/C5FO00518C
  52. Xia T, Wang JC, Xu W, Xu LH, Lao CH, Ye QX, et al. 20S-Ginsenoside Rh2 induces apoptosis in human Leukaemia Reh cells through mitochondrial signaling pathways. Biological & Pharmaceutical Bulletin 2014;37:248-54. https://doi.org/10.1248/bpb.b13-00667
  53. Choi S, Oh JY, Kim SJ. Ginsenoside Rh2 induces Bcl-2 family proteins-mediated apoptosis in vitro and in xenografts in vivo models. Journal of Cellular Biochemistry 2011;112:330-40. https://doi.org/10.1002/jcb.22932
  54. Zhang D, Wang A, Feng J, Zhang Q, Liu L, Ren H. Ginsenoside Rg5 induces apoptosis in human esophageal cancer cells through the phosphoinositide3 kinase/protein kinase B signaling pathway. Molecular Medicine Reports 2019;19:4019-26.
  55. Liu Y, Fan D. The preparation of ginsenoside Rg5, its antitumor activity against breast cancer cells and its targeting of PI3K. Nutrients 2020;12.
  56. Mao Q, Zhang PH, Wang Q, Li SL. Ginsenoside F(2) induces apoptosis in humor gastric carcinoma cells through reactive oxygen species-mitochondria pathway and modulation of ASK-1/JNK signaling cascade in vitro and in vivo. Phytomedicine : International Journal of Phytotherapy and Phytopharmacology 2014;21:515-22. https://doi.org/10.1016/j.phymed.2013.10.013
  57. Shangguan WJ, Li H, Zhang YH. Induction of G2/M phase cell cycle arrest and apoptosis by ginsenoside Rf in human osteosarcoma MG63 cells through the mitochondrial pathway. Oncology Reports 2014;31:305-13. https://doi.org/10.3892/or.2013.2815
  58. Liu J, Cai SZ, Zhou Y, Zhang XP, Liu DF, Jiang R, et al. Senescence as a consequence of ginsenoside rg1 response on k562 human leukemia cell line. Asian Pacific Journal of Cancer Prevention : APJCP 2012;13:6191-6. https://doi.org/10.7314/APJCP.2012.13.12.6191
  59. Qu X, Qu S, Yu X, Xu H, Chen Y, Ma X, et al. pseudo-G-Rh2 induces mitochondrial-mediated apoptosis in SGC-7901 human gastric cancer cells. Oncol Rep 2011;26:1441-6. https://doi.org/10.3892/or.2011.1442
  60. Duan Z, Deng J, Dong Y, Zhu C, Li W, Fan D. Anticancer effects of ginsenoside Rk3 on non-small cell lung cancer cells: in vitro and in vivo. Food & Function 2017;8:3723-36. https://doi.org/10.1039/C7FO00385D
  61. Murphy MP, Hartley RC. Mitochondria as a therapeutic target for common pathologies. Nature Reviews Drug Discovery 2018;17:865-86. https://doi.org/10.1038/nrd.2018.174
  62. Zhang H, Wang X, Ma Y, Shi Y. The effect of ginsenoside RB1, diazoxide, and 5-hydroxydecanoate on hypoxia-reoxygenation injury of H9C2 cardiomyocytes. Evidence-based Complementary and Alternative Medicine : eCAM 2019;(2019). 6046405.
  63. Li J, Yang YL, Li LZ, Zhang L, Liu Q, Liu K, et al. Succinate accumulation impairs cardiac pyruvate dehydrogenase activity through GRP91-dependent and independent signaling pathways: therapeutic effects of ginsenoside Rb1. Biochimica et biophysica acta Molecular basis of disease 2017;1863:2835-47. https://doi.org/10.1016/j.bbadis.2017.07.017
  64. Wang Y, Li X, Wang X, Lau W, Wang Y, Xing Y, et al. Ginsenoside Rd attenuates myocardial ischemia/reperfusion injury via Akt/GSK-3beta signaling and inhibition of the mitochondria-dependent apoptotic pathway. PloS One 2013;8:e70956. https://doi.org/10.1371/journal.pone.0070956
  65. Tsutsumi YM, Tsutsumi R, Mawatari K, Nakaya Y, Kinoshita M, Tanaka K, et al. Compound K, a metabolite of ginsenosides, induces cardiac protection mediated nitric oxide via Akt/PI3K pathway. Life Sciences 2011;88:725-9. https://doi.org/10.1016/j.lfs.2011.02.011
  66. Xu Z, Li C, Liu Q, Yang H, Li P. Ginsenoside Rg1 protects H9c2 cells against nutritional stress-induced injury via aldolase/AMPK/PINK1 signalling. Journal of Cellular Biochemistry 2019;120:18388-97. https://doi.org/10.1002/jcb.29150
  67. Bagur R, Tanguy S, Foriel S, Grichine A, Sanchez C, Pernet-Gallay K, et al. The impact of cardiac ischemia/reperfusion on the mitochondria-cytoskeleton interactions. Biochimica et biophysica acta 2016;1862:1159-71. https://doi.org/10.1016/j.bbadis.2016.03.009
  68. Dong G, Chen T, Ren X, Zhang Z, Huang W, Liu L, et al. Rg1 prevents myocardial hypoxia/reoxygenation injury by regulating mitochondrial dynamics imbalance via modulation of glutamate dehydrogenase and mitofusin 2. Mitochondrion 2016;26:7-18. https://doi.org/10.1016/j.mito.2015.11.003
  69. Bi J, Zhang J, Ren Y, Du Z, Li Q, Wang Y, et al. Irisin alleviates liver ischemia-reperfusion injury by inhibiting excessive mitochondrial fission, promoting mitochondrial biogenesis and decreasing oxidative stress. Redox Biology 2019;20:296-306. https://doi.org/10.1016/j.redox.2018.10.019
  70. Yang YL, Li J, Liu K, Zhang L, Liu Q, Liu B, et al. Ginsenoside Rg5 increases cardiomyocyte resistance to ischemic injury through regulation of mitochondrial hexokinase-II and dynamin-related protein 1. Cell Death & Disease 2017;8:e2625. https://doi.org/10.1038/cddis.2017.43
  71. Wang Y, Liang X, Chen Y, Zhao X. Screening SIRT1 activators from medicinal plants as bioactive compounds against oxidative damage in mitochondrial function. Oxidative Medicine and Cellular Longevity 2016;2016:4206392. https://doi.org/10.1155/2016/4206392
  72. Chen X, Wang Q, Shao M, Ma L, Guo D, Wu Y, et al. Ginsenoside Rb3 regulates energy metabolism and apoptosis in cardiomyocytes via activating PPARalpha pathway. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 2019;120:109487. https://doi.org/10.1016/j.biopha.2019.109487
  73. Zorov DB, Vorobjev IA, Popkov VA, Babenko VA, Zorova LD, Pevzner IB, et al. Lessons from the discovery of mitochondrial fragmentation (fission): a review and update. Cells 2019;8:2. https://doi.org/10.3390/cells8010002
  74. Chaunchaiyakul R, Leelayuwat N, Wu JF, Huang CY, Kuo CH. Contrasting actions of ginsenosides Rb1 and Rg1 on glucose tolerance in rats. The Chinese Journal of Physiology 2019;62:267-72. https://doi.org/10.4103/CJP.CJP_61_19
  75. Petersen MC, Shulman GI. Mechanisms of insulin action and insulin resistance. Physiological Reviews 2018;98:2133-223. https://doi.org/10.1152/physrev.00063.2017
  76. Kim MJ, Koo YD, Kim M, Lim S, Park YJ, Chung SS, et al. Rg3 improves mitochondrial function and the expression of key genes involved in mitochondrial biogenesis in C2C12 myotubes. Diabetes & Metabolism Journal 2016;40:406-13. https://doi.org/10.4093/dmj.2016.40.5.406
  77. Quansah E, Peelaerts W, Langston JW, Simon DK, Colca J, Brundin P. Targeting energy metabolism via the mitochondrial pyruvate carrier as a novel approach to attenuate neurodegeneration. Molecular Neurodegeneration 2018;13:28. https://doi.org/10.1186/s13024-018-0260-x
  78. Nan F, Sun G, Xie W, Ye T, Sun X, Zhou P, et al. Ginsenoside Rb1 mitigates oxidative stress and apoptosis induced by methylglyoxal in SH-SY5Y cells via the PI3K/Akt pathway. Mol Cell Probes 2019;48:101469. https://doi.org/10.1016/j.mcp.2019.101469
  79. Zhong F, Liang S, Zhong Z. Emerging role of mitochondrial DNA as a major driver of inflammation and disease progression. Trends in Immunology 2019;40:1120-33. https://doi.org/10.1016/j.it.2019.10.008
  80. Huang Y, Wu D, Fan W. Protection of ginsenoside Rg1 on chondrocyte from IL-1beta-induced mitochondria-activated apoptosis through PI3K/Akt signaling. Molecular and Cellular Biochemistry 2014;392:249-57. https://doi.org/10.1007/s11010-014-2035-1
  81. Na JY, Kim S, Song K, Lim KH, Shin GW, Kim JH, et al. Anti-apoptotic activity of ginsenoside Rb1 in hydrogen peroxide-treated chondrocytes: stabilization of mitochondria and the inhibition of caspase-3. Journal of Ginseng Research 2012;36:242-7. https://doi.org/10.5142/jgr.2012.36.3.242
  82. Palmer CJ, Bruckner RJ, Paulo JA, Kazak L, Long JZ, Mina AI, et al. Cdkal1, a type 2 diabetes susceptibility gene, regulates mitochondrial function in adipose tissue. Molecular Metabolism 2017;6:1212-25. https://doi.org/10.1016/j.molmet.2017.07.013
  83. Sun YN, Yang ZX, Ren FZ, Fang B. FGF19 alleviates palmitate-induced atrophy in C2C12 cells by inhibiting mitochondrial overload and insulin resistance. International Journal of Biological Macromolecules 2020;158:401-7. https://doi.org/10.1016/j.ijbiomac.2020.04.186
  84. Minter BE, Lowes DA, Webster NR, Galley HF. Differential effects of MitoVitE, alpha-tocopherol and trolox on oxidative stress, mitochondrial function and inflammatory signalling pathways in endothelial cells cultured under conditions mimicking sepsis. Antioxidants 2020;9:3.
  85. Lee JH, Park A, Oh KJ, Lee SC, Kim WK, Bae KH. The role of adipose tissue mitochondria: regulation of mitochondrial function for the treatment of metabolic diseases. International Journal of Molecular Sciences 2019;20:19. https://doi.org/10.3390/ijms20010019
  86. Liu H, Wang J, Liu M, Zhao H, Yaqoob S, Zheng M, et al. Antiobesity effects of ginsenoside Rg1 on 3T3-L1 preadipocytes and high fat diet-induced obese mice mediated by AMPK. Nutrients 2018;10:7. https://doi.org/10.3390/nu10010007
  87. Mu Q, Fang X, Li X, Zhao D, Mo F, Jiang G, et al. Ginsenoside Rb1 promotes browning through regulation of PPARgamma in 3T3-L1 adipocytes. Biochem Biophys Res Commun 2015;466:530-5. https://doi.org/10.1016/j.bbrc.2015.09.064
  88. Lee SJ, Bae JH, Lee H, Lee H, Park J, Kang JS, et al. Ginsenoside Rg3 upregulates myotube formation and mitochondrial function, thereby protecting myotube atrophy induced by tumor necrosis factor-alpha. Journal of Ethnopharmacology 2019;242:112054. https://doi.org/10.1016/j.jep.2019.112054
  89. Kim SJ, Jang JY, Kim EJ, Cho EK, Ahn DG, Kim C, et al. Ginsenoside Rg3 restores hepatitis C virus-induced aberrant mitochondrial dynamics and inhibits virus propagation. Hepatology 2017;66:758-71. https://doi.org/10.1002/hep.29177
  90. Xing W, Yang L, Peng Y, Wang Q, Gao M, Yang M, et al. Ginsenoside Rg3 attenuates sepsis-induced injury and mitochondrial dysfunction in liver via AMPK-mediated autophagy flux. Bioscience Reports 2017;37:4.
  91. Lee H, Hong Y, Tran Q, Cho H, Kim M, Kim C, et al. A new role for the ginsenoside RG3 in antiaging via mitochondria function in ultraviolet-irradiated human dermal fibroblasts. Journal of Ginseng Research 2019;43:431-41. https://doi.org/10.1016/j.jgr.2018.07.003
  92. Fan C, Ma Q, Xu M, Qiao Y, Zhang Y, Li P, et al. Ginsenoside Rb1 attenuates high glucose-induced oxidative injury via the NAD-PARP-SIRT Axis in rat retinal capillary endothelial cells. International Journal of Molecular Sciences 2019;20:19. https://doi.org/10.3390/ijms20010019
  93. Piao MJ, Kang KA, Zhen AX, Fernando P, Ahn MJ, Koh YS, et al. Particulate matter 2.5 mediates cutaneous cellular injury by inducing mitochondria-associated endoplasmic reticulum stress: protective effects of ginsenoside Rb1. Antioxidants 2019;8:9. https://doi.org/10.3390/antiox8010009
  94. Huang GD, Zhong XF, Deng ZY, Zeng R. Proteomic analysis of ginsenoside Re attenuates hydrogen peroxide-induced oxidative stress in human umbilical vein endothelial cells. Food & Function 2016;7:2451-61. https://doi.org/10.1039/C6FO00123H
  95. Zhou JS, Wang JF, He BR, Cui YS, Fang XY, Ni JL, et al. Ginsenoside Rd attenuates mitochondrial permeability transition and cytochrome C release in isolated spinal cord mitochondria: involvement of kinase-mediated pathways. International Journal of Molecular Sciences 2014;15:9859-77. https://doi.org/10.3390/ijms15069859
  96. Liu X, Wang L, Wen A, Yang J, Yan Y, Song Y, et al. Ginsenoside-Rd improves outcome of acute ischaemic stroke - a randomized, double-blind, placebocontrolled, multicenter trial. European Journal of Neurology 2012;19:855-63. https://doi.org/10.1111/j.1468-1331.2011.03634.x
  97. Xu X, Lu Q, Wu J, Li Y, Sun J. Impact of extended ginsenoside Rb1 on early chronic kidney disease: a randomized, placebo-controlled study. Inflammopharmacology 2017;25:33-40. https://doi.org/10.1007/s10787-016-0296-x