DOI QR코드

DOI QR Code

후크형 및 스무스형 강섬유의 혼합 비율과 변형속도에 따른 하이브리드 섬유보강 시멘트복합체의 인장특성

Tensile Properties of Hybrid Fiber Reinforced Cement Composite according to the Hooked & Smooth Steel Fiber Blending Ratio and Strain Rate

  • 투고 : 2021.02.04
  • 심사 : 2021.05.20
  • 발행 : 2021.06.30

초록

본 연구에서는 후크형 강섬유(HSF)와 스무스형 섬유(SSF)의 혼합 비율과 변형속도가 하이브리드 섬유보강 시멘트복합체의 인장 특성 시너지 효과에 미치는 영향을 평가하기 위하여, HSF와 SSF를 각각 1.5+0.5, 1.0+1.0, 0.5+1.0vol.%의 혼합 비율로 혼입한 하이브리드 섬유보강 시멘트복합체를 제작하였다. 실험 결과, HSF를 보강한 시멘트복합체(HSF2.0)은 변형속도가 증가함에 따라 섬유 주변 매트릭스에 발생하는 마이크로 균열의 증가에 의해 직선형으로 인발되는 섬유의 수가 감소하고, 인장강도 점 이후 응력 저하가 급격하게 발생하였다. SSF가 0.5vol.% 혼입되는 경우, 준정적에서 마이크로 균열을 효과적으로 제어하지만, 고속에서는 마이크로 균열 제어 및 후크형 강섬유의 인발저항성능 향상에 효과적이지 않은 것으로 확인되었다. 반면, HSF 1.0vol.%와 SSF 1.0vol.%를 혼입한 시험체(HSF1.0SSF1.0)은 마이크로 및 매크로 균열에 대해 각각의 섬유가 효과적으로 제어하고, SSF가 HSF의 인발저항성능을 향상시킴으로써 고속에서 변형능력 및 에너지 흡수 능력에 대한 섬유 혼합 효과가 크게 증가하였으며, 인장강도, 변형능력 및 피크인성의 변형속도 민감도가 가장 높은 것으로 나타났다. 반면, SSF 1.5vol.%의 혼입은 매트릭스 내의 섬유 혼입 개체 수를 증가시키고, HSF의 인발저항성능을 향상시켜 가장 높은 인장강도 및 연화인성 시너지 효과를 나타내었지만, 매크로 균열을 제어하는 HSF의 혼입률이 0.5vol.%로 낮아 변형능력 및 피크인성 시너지에는 효과적이지 않은 것으로 확인되었다.

In this study, the fiber blending ratio and strain rate effect on the tensile properties synergy effect of hybrid fiber reinforced cement composite was evaluated. Hooked steel fiber(HSF) and smooth steel fiber(SSF) were used for reinforcing fiber. The fiber blending ratio of HSF+SSF were 1.5+0.5, 1.0+1.0 and 0.5+1.5vol.%. As a results, in the cement composite(HSF2.0) reinforced with HSF, as the strain rate increases, the tensile stress sharply decreased after the peak stress because of the decrease in the number of straightened pull-out fibers by increase of micro cracks in the matrix around HSF. When 0.5 vol.% of SSF was mixed, the micro cracks was effectively controlled at the static rate, but it was not effective in controlling micro cracks and improving the pull-out resistance of HSF at the high rate. On the other hand, the specimen(HSF1.0SSF1.0) in which 1.0vol.% HSF and 1.0vol.% SSF were mixed, each fibers controls against micro and macro cracks, and SSF improves the pull-out resistance of HSF effectively. Thus, the fiber blending effect of the strain capacity and energy absorption capacity was significantly increased at the high rate, and it showed the highest dynamic increase factor of the tensile strength, strain capacity and peak toughness. On the other hand, the incorporation of 1.5 vol.% SSF increases the number of fibers in the matrix and improves the pull-out resistance of HSF, resulting in the highest fiber blending effect of tensile strength and softening toughness. But as a low volume fraction of HSF which controlling macro crack, it was not effective for synergy of strain capacity and peak toughness.

키워드

과제정보

이 논문은 2015년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구입니다 (No.2015R1A5A1037548).

참고문헌

  1. Kim, H., Kim, G., Nam, J., Kim, J., Han, S., and Lee, S. (2015), Static Mechanical Properties and Impact Resistance of Amorphous Metallic Fiber-Reinforced Concrete, Composite Structures, 134, 831-844. https://doi.org/10.1016/j.compstruct.2015.08.128
  2. Kim, G. Y., Choi, J. I., Park, S. E., Kim, H., Lee, Y., and Lee, B. Y. (2018), Response of UHPFRC and HDFRC Under Static and High-Velocity Projectile Impact Loads, Construction and Building Materials, 188, 399-408. https://doi.org/10.1016/j.conbuildmat.2018.08.135
  3. Lee, S., Kim, G., Kim, H., Son, M., Choe, G., and Nam, J. (2018), Strain Behavior of Concrete Panels Subjected to Different Nose Shapes of Projectile Impact, Materials, 11(3), 409. https://doi.org/10.3390/ma11030409
  4. Lee, S., Kim, G., Kim, H., Son, M., Choe, G., Kobayashi, K., and Nam, J. (2021), Impact Resistance, Flexural and Tensile Properties of Amorphous Metallic Fiber-Reinforced Cementitious Composites According to Fiber Length, Construction and Building Materials, 271, 121872. https://doi.org/10.1016/j.conbuildmat.2020.121872
  5. Choi, J. I., Koh, K. T., and Lee, B. Y. (2015), Tensile Behavior of Ultra- High Performance Concrete According to Combination of Fibers, Journal of the Korea Institute for Structural Maintenance and Inspection, 19(4), 49-56. https://doi.org/10.11112/jksmi.2015.19.4.049
  6. Nam, J. S., Kim, H. S., and Kim, G. Y. (2017), Experimental Investigation on the Blast Resistance of Fiber-Reinforced Cementitious Composite Panels Subjected to Contact Explosions, International Journal of Concrete Structures and Materials, 11(1), 29-43. https://doi.org/10.1007/s40069-016-0179-y
  7. Yuh, O. K., and Bae, B. I. (2019), Evaluation of Flexural Strength and Ductility of Hybrid Fiber Reinforced UHSC Flexural Members, Journal of the Korea institute for structural maintenance and inspection, 23(6), 61-69.
  8. Kim, H. S., Kim, G. Y., Lee, S. K., Son, M. J., and Nam, J. S. (2017), Strain Rate Effect on the Compressive and Tensile Strength of Hooked Steel Fiber and Polyamide Fiber Reinforced Cement Composite, Journal of the Korea institute for structural maintenance and inspection, 21(3), 76-85. https://doi.org/10.11112/jksmi.2017.21.3.076
  9. Kim, H., Kim, G., Lee, S., Choe, G., Noguchi, T., and Nam, J. (2019), Direct Tensile Behavior of Amorphous Metallic Fiber-Reinforced Cementitious Composites: Effect of Fiber Length, Fiber Volume Fraction, and Strain Rate, Composites Part B: Engineering, 177, 107430. https://doi.org/10.1016/j.compositesb.2019.107430
  10. Kim, H., Kim, G., Lee, S., Son, M., Choe, G., and Nam, J. (2019), Strain Rate Effects on the Compressive and Tensile Behavior of Bundle-Type Polyamide Fiber-Reinforced Cementitious Composites, Composites Part B: Engineering, 160, 50-65. https://doi.org/10.1016/j.compositesb.2018.10.008
  11. Kim, H. S., Kim, G. Y., Lee, S. K., Choe, G. C., and Nam, J. S. (2019), Direct Tensile Properties of Fiber-Reinforced Cement Based Composites according to the Length and Volume Fraction of Amorphous Metallic Fiber, Journal of the Korea Institute of Building Construction, 19(3), 201-207. https://doi.org/10.5345/JKIBC.2019.19.3.201
  12. Kim, H., Kim, G., Lee, S., Choe, G., Nam, J., Noguchi, T., and Mechtcherine, V. (2020), Effects of Strain Rate on the Tensile Behavior of Cementitious Composites Made with Amorphous Metallic Fiber, Cement and Concrete Composites, 108, 103519. https://doi.org/10.1016/j.cemconcomp.2020.103519
  13. Tran, T. K., and Kim, D. J. (2017), Synergistic Response of Blending Fibers in Ultra-High-Performance Concrete Under High Rate Tensile Loads, Cement and Concrete Composites, 78, 132-145. https://doi.org/10.1016/j.cemconcomp.2017.01.008
  14. Park, J. K., Kim, S. W., and Kim, D. J. (2017), Matrix-StrengthDependent Strain-Rate Sensitivity of Strain-Hardening Fiber-Reinforced Cementitious Composites Under Tensile Impact, Composite Structures, 162, 313-324. https://doi.org/10.1016/j.compstruct.2016.12.022
  15. Tran, N. T., Tran, T. K., Jeon, J. K., Park, J. K., and Kim, D. J. (2016), Fracture Energy of Ultra-High-Performance Fiber-Reinforced Concrete at High Strain Rates, Cement and Concrete Research, 79, 169-184. https://doi.org/10.1016/j.cemconres.2015.09.011
  16. Son, M. J., Kim, G. Y., Lee, S. K., Kim, H. S., and Nam, J. S. (2017), Tensile Behavior of Hybrid Fiber Reinforced Cement Composite According to the Hooked Steel Fiber and Polyvinyl Alcohol Fiber Blending Ratio and Strain Rate, Journal of the Korea Institute for Structural Maintenance and Inspection, 21(6), 98-105. https://doi.org/10.11112/jksmi.2017.21.6.098
  17. Son, M., Kim, G., Kim, H., Lee, S., Nam, J., and Kobayashi, K. (2020), Effects of the Strain Rate and Fiber Blending Ratio on the Tensile Behavior of Hooked Steel Fiber and Polyvinyl Alcohol Fiber Hybrid Reinforced Cementitious Composites, Cement and Concrete Composites, 106, 103482. https://doi.org/10.1016/j.cemconcomp.2019.103482