DOI QR코드

DOI QR Code

Luminescent Properties and Energy Transfer Efficiency of BaWO4:Dy3+, Eu3+ White Light-Emitting Phosphors

BaWO4:Dy3+,Eu3+ 백색광 형광체의 발광 특성과 에너지 전달 효율

  • Cho, Shinho (Department of Materials Science and Engineering, Silla University)
  • 조신호 (신라대학교 신소재공학과)
  • Received : 2021.05.21
  • Accepted : 2021.06.27
  • Published : 2021.06.30

Abstract

Dy3+- and Eu3+-codoped BaWO4 phosphors for white light-emitting diode were synthesized with different activator ions via a solid-state reaction process. The structural, morphological, and optical properties of the BaWO4:Dy3+,Eu3+ phosphors were investigated as a function of Eu3+ concentration at a fixed concentration of Dy3+ ions. XRD patterns exhibited that all the synthesized phosphors had a tetragonal system, irrespective of the concentrations of Dy3+ and Eu3+ ions. The excitation spectra of the synthesized phosphors were composed of three intense bands centered at 251, 355, and 393 nm and several weak peaks. For the BaWO4:Dy3+,Eu3+ phosphors synthesized with 1 mol% of Eu3+, the emission spectra under ultraviolet excitation at 393 nm showed two strong blue and yellow bands at 485 and 577 nm corresponding to the 4F9/26H15/2 and 4F9/26H13/2 transitions of Dy3+ ions, respectively and several weak bands in the range of 600-700 nm resulting from the 4f transitions of Eu3+ ions. As the concentration of Eu3+ ions increased, intensities of the blue and yellow emission bands gradually decreased while those of the red emissions increased rapidly and the energy transfer efficiency from Dy3+ to Eu3+ ions was 95.3% at 20 mol% of Eu3+. The optimum white light emission with x=0.363, y=0.357 CIE 1931 chromaticity coordinates was obtained for the sample doped with 5 mol% Dy3+ and 1 mol% of Eu3+.

Keywords

References

  1. P. Fu, Q. Shan, Y. Shang, J. Song, H. Zeng, Z. Ning, J. Gong, Perovskite Nanocrystals: Synthesis, Properties and Applications, Sci. Bull. 62 (2017) 369-380. https://doi.org/10.1016/j.scib.2017.01.006
  2. H. Y. Ryu, Analysis on the Luminous Efficiency of Phosphor-Conversion White Light-Emitting Diode, J. Opt. Soc. Korea, 17(1) (2013) 22-26. https://doi.org/10.3807/JOSK.2013.17.1.022
  3. Y. C. Li, Y. H. Chang, Y. F. Lin, Y. S. Chang, Y. J. Lin, Synthesis and Luminescent Properties of Ln3+ (Eu3+, Sm3+, Dy3+)-doped Lanthanum Aluminum Germanate LaAlGe2O7 Phosphors, J. Alloy. Compd. 439 (2007) 367-375. https://doi.org/10.1016/j.jallcom.2006.08.269
  4. T. W. Kuo, W. R. Liu, T. M. Chen, High Color Rendering White Light-Emitting-Diode Illuminator Using the Red-Emitting Eu2+-Activated CaZnOS Phosphors Excited by Blue LED, Opt. Express, 18(8) (2010) 8187-8192. https://doi.org/10.1364/OE.18.008187
  5. A. A. Setlur, Phosphors for LED-based Solid-State Lighting, Electrochem. Soc. Interface, Winter (2009) 32-36.
  6. H. Wu, C. Wang, S. He, Research of Color Rendering of White LED Based on Red and Green Phosphors, Acta. Optica. Sinica, 28(9) (2008) 1777-1781. https://doi.org/10.3788/AOS20082809.1777
  7. C. C. Lin, Y. S. Tang, S. F. Hu, R. S. Liu, KBaPO4:Ln (Ln=Eu, Tb, Sm) Phosphors for UV Excitable White Light-Emitting Diodes, J. Lumin. 129 (2009) 1682-1684. https://doi.org/10.1016/j.jlumin.2009.03.022
  8. R. Grasser, W. Pompe, A. Scharmann, Defect Luminescence in Tungstate, J. Lumin. 40/41 (1988) 343-344. https://doi.org/10.1016/0022-2313(88)90224-4
  9. M. Nazarov, D. Y. Noh, Rare Earth Double Activated Phosphors for Different Applications, J. Rare Earth. 28 (2010) 1-11. https://doi.org/10.1016/S1002-0721(10)60390-0
  10. Z. Yang, Y. Han, Y. Song, Y. Zhao, P. Liu, Synthesis and Luminescence Properties of a Novel Red Sr3Bi(PO4)3:Sm3+ Phosphor, J. Rare Earth. 30(12) (2012) 1199-1202. https://doi.org/10.1016/S1002-0721(12)60205-1
  11. S. Shi, J. Gao, J. Zhou, Effects of Charge Compensation on the Luminescence Behavior of Eu3+ Activated CaWO4 Phosphor, Opt. Mater. 30 (2008) 1616-1620. https://doi.org/10.1016/j.optmat.2007.10.007
  12. N. Niu, P. Yang, W. Wang, F. He, S. Gai, D. Wang, J. Lin, Solvothermal Synthesis of SrMoO4:Ln (Ln=Eu3+, Tb3+, Dy3+) Nanoparticles and Its Photoluminescence Properties at Room Temperature, Mater. Res. Bull. 46 (2011) 333-339. https://doi.org/10.1016/j.materresbull.2010.12.016
  13. H. Cho, S. Cho, Photoluminescence Properties of CaNb2O6:RE3+ (RE=Dy, Eu, Dy/Eu) Phosphors, Korean J. Mater. Res. 27(6) (2017) 339-344. https://doi.org/10.3740/MRSK.2017.27.6.339
  14. A. Pandey, V. K. Rai, Pr3+-Yb3+ Codoped Y2O3 Phosphor for Display Devices, Mater. Res. Bull. 57(9) (2014) 156-161. https://doi.org/10.1016/j.materresbull.2014.04.071
  15. Y. Zhang, W. Gong, J. Yu, H. Pang, Q. Song, G. Ning, A New Single-phase White-Light-Emitting CaWO4:Dy3+ Phosphor: Synthesis, Luminescence and Energy Transfer, RSC Adv. 5 (2015) 62527-62533. https://doi.org/10.1039/C5RA12502B
  16. A. K. Bedyal, V. Kumar, R. Prakash, O. M. Ntwaeaborwa, H. C. Swart, A Near-UV-Converted LiMgBO3:Dy3+ Nanoparticle: Surface and Spectral Investigations, Appl. Surf. Sci. 329 (2015) 40-46. https://doi.org/10.1016/j.apsusc.2014.12.056
  17. Y. Zhai, X. Li, J. Liu, M. Jiang, A Novel White-Emitting Phosphor ZnWO4:Dy3+, J. Rare Earth. 33(4) (2015) 350-354. https://doi.org/10.1016/s1002-0721(14)60425-7
  18. M. Shi, D. Zhang, C. Chang, Dy3+:Ca2SnO4, a New Yellow Phosphor with Afterglow Behavior, J. Alloy. Compd. 639 (2015) 168-172. https://doi.org/10.1016/j.jallcom.2015.02.068
  19. B. Devakumar, H. Guo, Y. J. Zeng, X. Huang, A Single-Phased Warm-White-Emitting K3Y(PO4)2:Dy3+,Sm3+ Phosphor with Tuneable Photoluminescence for Near-UV-Excited White LEDs, Dyes Pigm. 157 (2018) 72-79. https://doi.org/10.1016/j.dyepig.2018.04.042