References
- Woodbury RM. The relation between breast and artificial feeding and infant mortality. Am J Epidemiol 1922;2:668-87. https://doi.org/10.1093/oxfordjournals.aje.a118563
- Scrimshaw NS, Taylor CE, Gordon JE. Interactions of nutrition and infection. Monogr Ser World Health Organ 1968;57:3-329.
- Jones G, Steketee RW, Black RE, Bhutta ZA, Morris SS; Bellagio Child Survival Study Group. How many child deaths can we prevent this year? Lancet 2003;362:65-71. https://doi.org/10.1016/S0140-6736(03)13811-1
- Lawrence RM, Pane CA. Human breast milk: current concepts of immunology and infectious diseases. Curr Probl Pediatr Adolesc Health Care 2007;37:7-36. https://doi.org/10.1016/j.cppeds.2006.10.002
- Goldman AS, Chheda S, Garofalo R. Evolution of immunologic functions of the mammary gland and the postnatal development of immunity. Pediatr Res 1998;43:155-62. https://doi.org/10.1203/00006450-199802000-00001
- Hanson LA, Silfverdal SA, Korotkova M, Erling V, Strombeck L, Olcen P, et al. Immune system modulation by human milk. Adv Exp Med Biol 2002;503:99-106. https://doi.org/10.1007/978-1-4615-0559-4_11
- Hamosh M. Bioactive factors in human milk. Pediatr Clin North Am 2001;48:69-86. https://doi.org/10.1016/S0031-3955(05)70286-8
- Ballard O, Morrow AL. Human milk composition: nutrients and bioactive factors. Pediatr Clin North Am 2013;60:49-74. https://doi.org/10.1016/j.pcl.2012.10.002
- Bauer J, Gerss J. Longitudinal analysis of macronutrients and minerals in human milk produced by mothers of preterm infants. Clin Nutr 2011;30:215-20. https://doi.org/10.1016/j.clnu.2010.08.003
- Nommsen LA, Lovelady CA, Heinig MJ, Lonnerdal B, Dewey KG. Determinants of energy, protein, lipid, and lactose concentrations in human milk during the first 12 mo of lactation: the DARLING Study. Am J Clin Nutr 1991;53:457-65. https://doi.org/10.1093/ajcn/53.2.457
- Saarela T, Kokkonen J, Koivisto M. Macronutrient and energy contents of human milk fractions during the first six months of lactation. Acta Paediatr 2005;94:1176-81. https://doi.org/10.1111/j.1651-2227.2005.tb02070.x
- Hamosh M, Peterson JA, Henderson TR, Scallan CD, Kiwan R, Ceriani RL, et al. Protective function of human milk: the milk fat globule. Semin Perinatol 1999;23:242-9. https://doi.org/10.1016/S0146-0005(99)80069-X
- Hettinga K, van Valenberg H, de Vries S, Boeren S, van Hooijdonk T, van Arendonk J, et al. The host defense proteome of human and bovine milk. PLoS One 2011;6:e19433. https://doi.org/10.1371/journal.pone.0019433
- Saeland E, de Jong MA, Nabatov AA, Kalay H, Geijtenbeek TB, van Kooyk Y. MUC1 in human milk blocks transmission of human immunodeficiency virus from dendritic cells to T cells. Mol Immunol 2009;46:2309-16. https://doi.org/10.1016/j.molimm.2009.03.025
- Garofalo R. Cytokines in human milk. J Pediatr 2010;156(2 Suppl):S36-40. https://doi.org/10.1016/j.jpeds.2009.11.019
- Cavaletto M, Giuffrida MG, Conti A. The proteomic approach to analysis of human milk fat globule membrane. Clin Chim Acta 2004;347:41-8. https://doi.org/10.1016/j.cccn.2004.04.026
- Jarvinen KM, Suomalainen H. Leucocytes in human milk and lymphocyte subsets in cow's milk-allergic infants. Pediatr Allergy Immunol 2002;13:243-54. https://doi.org/10.1034/j.1399-3038.2002.00087.x
- Ichikawa M, Sugita M, Takahashi M, Satomi M, Takeshita T, Araki T, et al. Breast milk macrophages spontaneously produce granulocyte-macrophage colony-stimulating factor and differentiate into dendritic cells in the presence of exogenous interleukin-4 alone. Immunology 2003;108:189-95. https://doi.org/10.1046/j.1365-2567.2003.01572.x
- Penttila IA. Milk-derived transforming growth factor-beta and the infant immune response. J Pediatr 2010;156(2 Suppl):S21-5. https://doi.org/10.1016/j.jpeds.2009.11.016
- Gilmore WS, McKelvey-Martin VJ, Rutherford S, Strain JJ, Loane P, Kell M, et al. Human milk contains granulocyte colony stimulating factor. Eur J Clin Nutr 1994;48:222-4.
- Gersting JA, Christensen RD, Calhoun DA. Effects of enterally administering granulocyte colony-stimulating factor to suckling mice. Pediatr Res 2004;55:802-6. https://doi.org/10.1203/01.PDR.0000117846.51197.7C
- Aspinall R, Prentice AM, Ngom PT. Interleukin 7 from maternal milk crosses the intestinal barrier and modulates T-cell development in offspring. PLoS One 2011;6:e20812. https://doi.org/10.1371/journal.pone.0020812
- Castellote C, Casillas R, Ramirez-Santana C, Perez-Cano FJ, Castell M, Moretones MG, et al. Premature delivery influences the immunological composition of colostrum and transitional and mature human milk. J Nutr 2011;141:1181-7. https://doi.org/10.3945/jn.110.133652
- Maheshwari A, Christensen RD, Calhoun DA. ELR+ CXC chemokines in human milk. Cytokine 2003;24:91-102. https://doi.org/10.1016/j.cyto.2003.07.002
- Maheshwari A, Lu W, Lacson A, Barleycorn AA, Nolan S, Christensen RD, et al. Effects of interleukin-8 on the developing human intestine. Cytokine 2002;20:256-67. https://doi.org/10.1006/cyto.2002.1996
- Mizuno K, Hatsuno M, Aikawa K, Takeichi H, Himi T, Kaneko A, et al. Mastitis is associated with IL-6 levels and milk fat globule size in breast milk. J Hum Lact 2012;28:529-34. https://doi.org/10.1177/0890334412455946
- Hunt KM, Williams JE, Shafii B, Hunt MK, Behre R, Ting R, et al. Mastitis is associated with increased free fatty acids, somatic cell count, and interleukin-8 concentrations in human milk. Breastfeed Med 2013;8:105-10. https://doi.org/10.1089/bfm.2011.0141
- Agarwal S, Karmaus W, Davis S, Gangur V. Immune markers in breast milk and fetal and maternal body fluids: a systematic review of perinatal concentrations. J Hum Lact 2011;27:171-86. https://doi.org/10.1177/0890334410395761
- Hrdy J, Novotna O, Kocourkova I, Prokesova L. Cytokine expression in the colostral cells of healthy and allergic mothers. Folia Microbiol (Praha) 2012;57:215-9. https://doi.org/10.1007/s12223-012-0112-y
- Brandtzaeg P. The mucosal immune system and its integration with the mammary glands. J Pediatr 2010;156(2 Suppl):S8-15. https://doi.org/10.1016/j.jpeds.2009.11.014
- Kadaoui KA, Corthesy B. Secretory IgA mediates bacterial translocation to dendritic cells in mouse Peyer's patches with restriction to mucosal compartment. J Immunol 2007;179:7751-7. https://doi.org/10.4049/jimmunol.179.11.7751
- Gao X, McMahon RJ, Woo JG, Davidson BS, Morrow AL, Zhang Q. Temporal changes in milk proteomes reveal developing milk functions. J Proteome Res 2012;11:3897-907. https://doi.org/10.1021/pr3004002
- Gabrielli O, Zampini L, Galeazzi T, Padella L, Santoro L, Peila C, et al. Preterm milk oligosaccharides during the first month of lactation. Pediatrics 2011;128:e1520-31. https://doi.org/10.1542/peds.2011-1206
- Newburg DS, Ruiz-Palacios GM, Morrow AL. Human milk glycans protect infants against enteric pathogens. Annu Rev Nutr 2005;25:37-58. https://doi.org/10.1146/annurev.nutr.25.050304.092553
- Hunt KM, Foster JA, Forney LJ, Schutte UM, Beck DL, Abdo Z, et al. Characterization of the diversity and temporal stability of bacterial communities in human milk. PLoS One 2011;6:e21313. https://doi.org/10.1371/journal.pone.0021313
- Matsuki T, Yahagi K, Mori H, Matsumoto H, Hara T, Tajima S, et al. A key genetic factor for fucosyllactose utilization affects infant gut microbiota development. Nat Commun 2016;7:11939. https://doi.org/10.1038/ncomms11939
- Yu ZT, Chen C, Newburg DS. Utilization of major fucosylated and sialylated human milk oligosaccharides by isolated human gut microbes. Glycobiology 2013;23:1281-92. https://doi.org/10.1093/glycob/cwt065
- Underwood MA, Davis JCC, Kalanetra KM, Gehlot S, Patole S, Tancredi DJ, et al. Digestion of human milk oligosaccharides by Bifidobacterium breve in the premature infant. J Pediatr Gastroenterol Nutr 2017;65:449-55. https://doi.org/10.1097/MPG.0000000000001590
- Thongaram T, Hoeflinger JL, Chow J, Miller MJ. Human milk oligosaccharide consumption by probiotic and human-associated bifidobacteria and lactobacilli. J Dairy Sci 2017;100:7825-33. https://doi.org/10.3168/jds.2017-12753
- Wang M, Li M, Wu S, Lebrilla CB, Chapkin RS, Ivanov I, et al. Fecal microbiota composition of breast-fed infants is correlated with human milk oligosaccharides consumed. J Pediatr Gastroenterol Nutr 2015;60:825-33. https://doi.org/10.1097/MPG.0000000000000752
- LoCascio RG, Ninonuevo MR, Freeman SL, Sela DA, Grimm R, Lebrilla CB, et al. Glycoprofiling of bifidobacterial consumption of human milk oligosaccharides demonstrates strain specific, preferential consumption of small chain glycans secreted in early human lactation. J Agric Food Chem 2007;55:8914-9. https://doi.org/10.1021/jf0710480
- Marcobal A, Sonnenburg JL. Human milk oligosaccharide consumption by intestinal microbiota. Clin Microbiol Infect 2012;18 Suppl 4:12-5. https://doi.org/10.1111/j.1469-0691.2012.03863.x
- Desai MS, Seekatz AM, Koropatkin NM, Kamada N, Hickey CA, Wolter M, et al. A dietary fiberdeprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell 2016;167:1339-53.e21. https://doi.org/10.1016/j.cell.2016.10.043
- Makki K, Deehan EC, Walter J, Backhed F. The impact of dietary fiber on gut microbiota in host health and disease. Cell Host Microbe 2018;23:705-15. https://doi.org/10.1016/j.chom.2018.05.012
- Marcobal A, Barboza M, Froehlich JW, Block DE, German JB, Lebrilla CB, et al. Consumption of human milk oligosaccharides by gut-related microbes. J Agric Food Chem 2010;58:5334-40. https://doi.org/10.1021/jf9044205
- Coppa GV, Zampini L, Galeazzi T, Facinelli B, Ferrante L, Capretti R, et al. Human milk oligosaccharides inhibit the adhesion to Caco-2 cells of diarrheal pathogens: Escherichia coli, Vibrio cholerae, and Salmonella fyris. Pediatr Res 2006;59:377-82. https://doi.org/10.1203/01.pdr.0000200805.45593.17
- Weiss GA, Hennet T. The role of milk sialyllactose in intestinal bacterial colonization. Adv Nutr 2012;3:483S-8S. https://doi.org/10.3945/an.111.001651
- Ayechu-Muruzabal V, van Stigt AH, Mank M, Willemsen LEM, Stahl B, Garssen J, et al. Diversity of human milk oligosaccharides and effects on early life immune development. Front Pediatr 2018;6:239. https://doi.org/10.3389/fped.2018.00239
- Kim SY, Yi DY. Components of human breast milk: from macronutrient to microbiome and microRNA. Clin Exp Pediatr 2020;63:301-9. https://doi.org/10.3345/cep.2020.00059
- Grulee CG, Sanford HN. The influence of breast and artificial feeding on infantile eczema. J Pediatr 1936;9:223-5. https://doi.org/10.1016/S0022-3476(36)80058-4
- Nwaru BI, Craig LC, Allan K, Prabhu N, Turner SW, McNeill G, et al. Breastfeeding and introduction of complementary foods during infancy in relation to the risk of asthma and atopic diseases up to 10 years. Clin Exp Allergy 2013;43:1263-73. https://doi.org/10.1111/cea.12180
- Nwaru BI, Takkinen HM, Niemela O, Kaila M, Erkkola M, Ahonen S, et al. Timing of infant feeding in relation to childhood asthma and allergic diseases. J Allergy Clin Immunol 2013;131:78-86. https://doi.org/10.1016/j.jaci.2012.10.028
- Lowe AJ, Thien FC, Stoney RM, Bennett CM, Hosking CS, Hill DJ, et al. Associations between fatty acids in colostrum and breast milk and risk of allergic disease. Clin Exp Allergy 2008;38:1745-51. https://doi.org/10.1111/j.1365-2222.2008.03073.x
- Wijga AH, van Houwelingen AC, Kerkhof M, Tabak C, de Jongste JC, Gerritsen J, et al. Breast milk fatty acids and allergic disease in preschool children: the Prevention and Incidence of Asthma and Mite Allergy birth cohort study. J Allergy Clin Immunol 2006;117:440-7. https://doi.org/10.1016/j.jaci.2005.10.022
- Lee MT, Wu CC, Ou CY, Chang JC, Liu CA, Wang CL, et al. A prospective birth cohort study of different risk factors for development of allergic diseases in offspring of non-atopic parents. Oncotarget 2017;8:10858-70. https://doi.org/10.18632/oncotarget.14565
- Elbert NJ, van Meel ER, den Dekker HT, de Jong NW, Nijsten TEC, Jaddoe VWV, et al. Duration and exclusiveness of breastfeeding and risk of childhood atopic diseases. Allergy 2017;72:1936-43. https://doi.org/10.1111/all.13195
- Kidd P. Th1/Th2 balance: the hypothesis, its limitations, and implications for health and disease. Altern Med Rev 2003;8:223-46.
- Simon AK, Hollander GA, McMichael A. Evolution of the immune system in humans from infancy to old age. Proc Biol Sci 2015;282:20143085.
- Holscher HD, Davis SR, Tappenden KA. Human milk oligosaccharides influence maturation of human intestinal Caco-2Bbe and HT-29 cell lines. J Nutr 2014;144:586-91. https://doi.org/10.3945/jn.113.189704
- Holscher HD, Bode L, Tappenden KA. Human milk oligosaccharides influence intestinal epithelial cell maturation in vitro. J Pediatr Gastroenterol Nutr 2017;64:296-301. https://doi.org/10.1097/MPG.0000000000001274
- Backhed F, Roswall J, Peng Y, Feng Q, Jia H, Kovatcheva-Datchary P, et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 2015;17:690-703. https://doi.org/10.1016/j.chom.2015.04.004
- Tili E, Michaille JJ, Calin GA. Expression and function of micro-RNAs in immune cells during normal or disease state. Int J Med Sci 2008;5:73-9.
- Kosaka N, Izumi H, Sekine K, Ochiya T. microRNA as a new immune-regulatory agent in breast milk. Silence 2010;1:7. https://doi.org/10.1186/1758-907X-1-7
- Alsaweed M, Hartmann PE, Geddes DT, Kakulas F. MicroRNAs in breastmilk and the lactating breast: potential immunoprotectors and developmental regulators for the infant and the mother. Int J Environ Res Public Health 2015;12:13981-4020. https://doi.org/10.3390/ijerph121113981
- Melnik BC, Schmitz G. MicroRNAs: milk's epigenetic regulators. Best Pract Res Clin Endocrinol Metab 2017;31:427-42. https://doi.org/10.1016/j.beem.2017.10.003
- Taylor-Papadimitriou J, Shearer M, Stoker MG. Growth requirements of human mammary epithelial cells in culture. Int J Cancer 1977;20:903-8. https://doi.org/10.1002/ijc.2910200613
- Joshi PA, Jackson HW, Beristain AG, Di Grappa MA, Mote PA, Clarke CL, et al. Progesterone induces adult mammary stem cell expansion. Nature 2010;465:803-7. https://doi.org/10.1038/nature09091
- Lu X, Wang Q, Hu G, Van Poznak C, Fleisher M, Reiss M, et al. ADAMTS1 and MMP1 proteolytically engage EGF-like ligands in an osteolytic signaling cascade for bone metastasis. Genes Dev 2009;23:1882-94. https://doi.org/10.1101/gad.1824809
- Oskarsson T, Acharyya S, Zhang XH, Vanharanta S, Tavazoie SF, Morris PG, et al. Breast cancer cells produce tenascin C as a metastatic niche component to colonize the lungs. Nat Med 2011;17:867-74. https://doi.org/10.1038/nm.2379
- Tiede B, Kang Y. From milk to malignancy: the role of mammary stem cells in development, pregnancy and breast cancer. Cell Res 2011;21:245-57. https://doi.org/10.1038/cr.2011.11
- Hassiotou F, Beltran A, Chetwynd E, Stuebe AM, Twigger AJ, Metzger P, et al. Breastmilk is a novel source of stem cells with multilineage differentiation potential. Stem Cells 2012;30:2164-74. https://doi.org/10.1002/stem.1188
- Peroni DG, Piacentini GL, Bodini A, Pigozzi R, Boner AL. Transforming growth factor-beta is elevated in unpasteurized cow's milk. Pediatr Allergy Immunol 2009;20:42-4. https://doi.org/10.1111/j.1399-3038.2008.00737.x
- Ewaschuk JB, Unger S, O'Connor DL, Stone D, Harvey S, Clandinin MT, et al. Effect of pasteurization on selected immune components of donated human breast milk. J Perinatol 2011;31:593-8. https://doi.org/10.1038/jp.2010.209
- Akinbi H, Meinzen-Derr J, Auer C, Ma Y, Pullum D, Kusano R, et al. Alterations in the host defense properties of human milk following prolonged storage or pasteurization. J Pediatr Gastroenterol Nutr 2010;51:347-52. https://doi.org/10.1097/MPG.0b013e3181e07f0a
Cited by
- Short- and Long-Term Implications of Human Milk Microbiota on Maternal and Child Health vol.22, pp.21, 2021, https://doi.org/10.3390/ijms222111866
- Diverse Immune Effects of Bovine Colostrum and Benefits in Human Health and Disease vol.13, pp.11, 2021, https://doi.org/10.3390/nu13113798