Acknowledgement
This project was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, under Grant no. G-86-135-1442. The authors, therefore, acknowledge with thanks DSR for technical and financial support.
References
- Abdelrahman, A.A. and Eltaher, M.A. (2020), "On bending and buckling responses of perforated nanobeams including surface energy for different beams theories", Eng. Comput., 1-27. https://doi.org/10.1007/s00366-020-01211-8.
- Abdelrahman, A.A., Abd-El-Mottaleb, H.E. and Eltaher, M.A. (2020a), "On bending analysis of perforated microbeams including the microstructure effects", Struct. Eng. Mech., 76(6), 765. http://doi.org/10.12989/sem.2020.76.6.765.
- Abdelrahman, A.A., Esen, I., Ozarpa, C. and Eltaher, M.A. (2021), "Dynamics of perforated nanobeams subject to moving mass using the nonlocal strain gradient theory", Appl. Math. Model., 96, 215-235. https://doi.org/10.1016/j.apm.2021.03.008.
- Abdelrahman, A.A., Nabawy, A.E., Abdelhaleem, A.M. and Alieldin, S.S. (2019), "Dynamic finite element analysis of flexible double wishbone suspension systems with different damping mechanisms", Eur. J. Comput. Mech., 28(6), 573-604. https://doi.org/10.13052/ejcm2642-2085.2862.
- Abdelrahman, A.A., Nabawy, A.E., Abdelhaleem, A.M., Alieldin, S.S. and Eltaher, M.A. (2020b), "Nonlinear dynamics of viscoelastic flexible structural systems by finite element method", Eng. Comput., 1-22 https://doi.org/10.1007/s00366-020-01141-5.
- Abo-bakr, H.M., Abo-bakr, R.M., Mohamed, S.A. and Eltaher, M.A. (2020), "Weight optimization of axially functionally graded microbeams under buckling and vibration behaviors", Mech. Bas. Des. Struct. Mach., 1-22. https://doi.org/10.1080/15397734.2020.1838298.
- Abo-bakr, H.M., Abo-bakr, R.M., Mohamed, S.A. and Eltaher, M.A. (2021a), "Multi-objective shape optimization for axially functionally graded microbeams", Compos. Struct., 258, 113370. https://doi.org/10.1016/j.compstruct.2020.113370.
- Abo-bakr, R.M., Abo-bakr, H.M., Mohamed, S.A. and Eltaher, M.A. (2021b), "Optimal weight for buckling of FG beam under variable axial load using Pareto optimality", Compos. Struct., 258, 113193. https://doi.org/10.1016/j.compstruct.2020.113193.
- Akbas, S.D. (2014), "Free vibration of axially functionally graded beams in thermal environment", Int. J Eng. Appl. Sci., 6(3), 37-51. https://doi.org/10.24107/ijeas.251224.
- Akbas, S.D., Bashiri, A.H., Assie, A.E. and Eltaher, M.A. (2020), "Dynamic analysis of thick beams with functionally graded porous layers and viscoelastic support", J. Vib. Control, 1077546320947302. https://doi.org/10.1177/1077546320947302.
- Al-Qaisia, A.A. (2008), "Dynamics of a rotating beam with flexible root and flexible hub", Struct. Eng. Mech., 30(4), 427-444. https://doi.org/10.12989/sem.2008.30.4.427.
- Almitani, K.H., Abdelrahman, A.A. and Eltaher, M.A. (2019), "On forced and free vibrations of cutout squared beams", Steel Compos. Struct., 32(5), 643-655. https://doi.org/10.12989/scs.2019.32.5.643.
- Alnujaie, A., Akbas, S.D., Eltaher, M.A. and Assie, A. (2021), "Forced vibration of a functionally graded porous beam resting on viscoelastic foundation", Geomech. Eng., 24(1), 91-103. https://doi.org/10.12989/gae.2021.24.1.091.
- Alshorbagy, A.E., Eltaher, M.A. and Mahmoud, F.F. (2011), "Free vibration characteristics of a functionally graded beam by finite element method", Appl. Math. Model., 35(1), 412-425. https://doi.org/10.1016/j.apm.2010.07.006.
- Arvin, H., Hosseini, S.M.H. and Kiani, Y. (2021), "Free vibration analysis of pre/post buckled rotating functionally graded beams subjected to uniform temperature rise", Thin Wall. Struct., 158, 107187. https://doi.org/10.1016/j.tws.2020.107187.
- Asiri, S.A., Akbas, S.D. and Eltaher, M.A. (2020), "Damped dynamic responses of a layered functionally graded thick beam under a pulse load", Struct. Eng. Mech., 75(6), 713-722. https://doi.org/10.12989/sem.2020.75.6.713.
- Azimi, M., Mirjavadi, S.S., Shafiei, N., Hamouda, A.M.S. and Davari, E. (2018), "Vibration of rotating functionally graded Timoshenko nano-beams with nonlinear thermal distribution", Mech. Adv. Mater. Struct., 25(6), 467-480. https://doi.org/10.1080/15376494.2017.1285455.
- Babaei, M.H., Abbasi, M. and Eslami, M.R. (2008), "Coupled thermoelasticity of functionally graded beams", J. Therm. Stress., 31(8), 680-697. https://doi.org/10.1080/01495730802193930.
- Bambill, D.V., Felix, D.H. and Rossi, R.E. (2010), "Vibration analysis of rotating Timoshenko beams by means of the differential quadrature method", Struct. Eng. Mech., 34(2), 231-245. http://doi.org/10.12989/sem.2010.34.2.231.
- Bhattacharya, S. and Das, D. (2019), "Free vibration analysis of bidirectional-functionally graded and double-tapered rotating micro-beam in thermal environment using modified couple stress theory", Compos. Struct., 215, 471-492. https://doi.org/10.1016/j.compstruct.2019.01.080.
- Bouzidi, I., Hadjoui, A. and Fellah, A. (2020), "Dynamic analysis of functionally graded rotor-blade system using the classical version of the finite element method", Mech. Bas. Des. Struct. Mach., 1-29. https://doi.org/10.1080/15397734.2019.1706558.
- Daikh, A.A., Houari, M.S.A. and Eltaher, M.A. (2021), "A novel nonlocal strain gradient Quasi-3D bending analysis of sigmoid functionally graded sandwich nanoplates", Compos. Struct., 262, 113347. https://doi.org/10.1016/j.compstruct.2020.113347.
- Dangi, C., Saini, S., Lal, R. and Singh, I.V. (2020), "Size dependent FEM model for Bi-directional functionally graded nano-beams", Mater. Today: Proceed., 24, 1302-1311. https://doi.org/10.1016/j.matpr.2020.04.445.
- Demirbas, M.D., Caliskan, U., Xu, X. and Filippi, M. (2020), "Evaluation of the bending response of compact and thin-walled FG beams with CUF", Mech. Adv. Mater. Struct., 1-10. https://doi.org/10.1080/15376494.2019.1704951.
- Eltaher, M.A. and Akbas, S.D. (2020), "Transient response of 2D functionally graded beam structure", Struct. Eng. Mech., 75(3), 357-367. https://doi.org/10.12989/sem.2020.75.3.357.
- Eltaher, M.A., Attia, M.A., Soliman, A.E. and Alshorbagy, A.E. (2018), "Analysis of crack occurs under unsteady pressure and temperature in a natural gas facility by applying FGM", Struct. Eng. Mech., 66(1), 97-111. http://doi.org/10.12989/sem.2018.66.1.097.
- Eltaher, M.A., Omar, F.A., Abdalla, W.S., Kabeel, A.M. and Alshorbagy, A.E. (2020a), "Mechanical analysis of cutout piezoelectric nonlocal nanobeam including surface energy effects", Struct. Eng. Mech., 76(1), 141-151. https://doi.org/10.12989/sem.2020.76.1.141.
- Eltaher, M.A., Omar, F.A., Abdraboh, A.M., Abdalla, W.S. and Alshorbagy, A.E. (2020b), "Mechanical behaviors of piezoelectric nonlocal nanobeam with cutouts", Smart Struct. Syst., 25(2), 219-228. https://doi.org/10.12989/sss.2020.25.2.219.
- Esen, I. (2019), "Dynamic response of a functionally graded Timoshenko beam on two-parameter elastic foundations due to a variable velocity moving mass", Int. J. Mech. Sci., 153, 21-35. https://doi.org/10.1016/j.ijmecsci.2019.01.033.
- Esen, I., Abdelrahman, A.A. and Eltaher, M.A. (2020), "Dynamics analysis of Timoshenko perforated microbeams under moving loads", Eng. Comput., 1-17. https://doi.org/10.1007/s00366-020-01212-7.
- Esen, I., Eltaher, M.A. and Abdelrahman, A.A. (2021b), "Vibration response of symmetric and sigmoid functionally graded beam rested on elastic foundation under moving point mass", Mech. Bas. Des. Struct. Mach., 261, 113552. https://doi.org/10.1080/15397734.2021.190425
- Esen, I., Ozarpa, C. and Eltaher, M.A. (2021a), "Free vibration of a cracked FG microbeam embedded in an elastic matrix and exposed to magnetic field in a thermal environment", Compos. Struct., 261, 113552. https://doi.org/10.1016/j.compstruct.2021.113552.
- Fang, J., Gu, J. and Wang, H. (2018b), "Size-dependent three-dimensional free vibration of rotating functionally graded microbeams based on a modified couple stress theory", Int. J. Mech. Sci., 136, 188-199. https://doi.org/10.1016/j.ijmecsci.2017.12.028.
- Fang, J., Zheng, S., Xiao, J. and Zhang, X. (2020), "Vibration and thermal buckling analysis of rotating nonlocal functionally graded nanobeams in thermal environment", Aerosp. Sci. Technol., 106, 106146. https://doi.org/10.1016/j.ast.2020.106146.
- Fang, J., Zhou, D. and Dong, Y. (2018a), "Three-dimensional vibration of rotating functionally graded beams", J. Vib. Control, 24(15), 3292-3306. https://doi.org/10.1177/1077546317703867.
- Faroughi, S., Rahmani, A. and Friswell, M.I. (2020), "On wave propagation in two-dimensional functionally graded porous rotating nano-beams using a general nonlocal higher-order beam model", Appl. Math. Model., 80, 169-190. https://doi.org/10.1016/j.apm.2019.11.040.
- Ghadiri, M. and Shafiei, N. (2016), "Vibration analysis of rotating functionally graded Timoshenko microbeam based on modified couple stress theory under different temperature distributions", Acta Astronautica, 121, 221-240. https://doi.org/10.1016/j.actaastro.2016.01.003.
- Hamed, M.A., Abo-bakr, R.M., Mohamed, S.A. and Eltaher, M.A. (2020), "Influence of axial load function and optimization on static stability of sandwich functionally graded beams with porous core", Eng. Comput., 36(4), 1929-1946. https://doi.org/10.1007/s00366-020-01023-w.
- Hamed, M.A., Sadoun, A.M. and Eltaher, M.A. (2019), "Effects of porosity models on static behavior of size dependent functionally graded beam", Struct. Eng. Mech., 71(1), 89-98. https://doi.org/10.12989/sem.2019.71.1.089.
- Han, H., Cao, D. and Liu, L. (2019), "A new approach for steady-state dynamic response of axially functionally graded and non-uniformed beams", Compos. Struct., 226, 111270. https://doi.org/10.1016/j.compstruct.2019.111270.
- Karamanli, A. (2018), "Free vibration analysis of two directional functionally graded beams using a third order shear deformation theory", Compos. Struct., 189, 127-136. https://doi.org/10.1016/j.compstruct.2018.01.060.
- Ke, L.L., Yang, J. and Kitipornchai, S. (2010), "An analytical study on the nonlinear vibration of functionally graded beams", Meccanica, 45(6), 743-752. https://doi.org/10.1007/s11012-009-9276-1.
- Korak, S. and Ranjan, G. (2014), "Closed-form solutions for axially functionally graded Timoshenko beams having uniform cross-section and fixed-fixed boundary condition", Compos.: Part B, 58, 361-370. https://doi.org/10.1016/j.compositesb.2013.10.077.
- Kumar, P.R., Rao, K.M. and Rao, N.M. (2017), "Flapwise vibration of rotating functionally graded beam", Mater. Today: Proc., 4(2), 3736-3744. https://doi.org/10.1016/j.matpr.2017.02.269.
- Lee, H.H. (2020), Finite Element Simulations with ANSYS Workbench 2020, SDC Publications.
- Li, C. (2017), "Nonlocal thermo-electro-mechanical coupling vibrations of axially moving piezoelectric nanobeams", Mech. Bas. Des. Struct. Mach., 45(4), 463-478. https://doi.org/10.1080/15397734.2016.1242079.
- Li, L., Liao, W.H., Zhang, D. and Zhang, Y. (2019), "Vibration control and analysis of a rotating flexible FGM beam with a lumped mass in temperature field", Compos. Struct., 208, 244-260. https://doi.org/10.1016/j.compstruct.2018.09.070.
- Li, Z., Xu, Y. and Huang, D. (2020), "Analytical solution for vibration of functionally graded beams with variable crosssections resting on Pasternak elastic foundations", Int. J. Mech. Sci., 106084. https://doi.org/10.1016/j.ijmecsci.2020.106084
- Maganti, N.R. and Nalluri, M.R. (2015), "Flapwise bending vibration analysis of functionally graded rotating double-tapered beams", Int. J. Mech. Mater. Eng., 10(1), 21. https://doi.org/10.1186/s40712-015-0040-0.
- Malekzadeh, P. and Monajjemzadeh, S.M. (2016), "Dynamic response of functionally graded beams in a thermal environment under a moving load", Mech. Adv. Mater. Struct., 23(3), 248-258. https://doi.org/10.1080/15376494.2014.949930.
- Melaibari, A., Abu-bakr, R.M., Mohamed, S.A. and Eltaher, M.A. (2020), "Static stability of higher order functionally graded beam under variable axial load", Alex. Eng., 59, 1661-1675. https://doi.org/10.1016/j.aej.2020.04.012.
- Mohammadian, M. (2021), "Nonlinear free vibration of damped and undamped bi-directional functionally graded beams using a cubic-quintic nonlinear model", Compos. Struct., 255, 112866. https://doi.org/10.1016/j.compstruct.2020.112866.
- Nabawy, A., Abdelrahman, A., Abdelhaleem, A. and Alieldin, S. (2019), "Finite element analysis of double wishbone vehicle suspension system", Egypt. J. Eng. Sci. Technol., 27, 12-22.
- Nguyen, K.V., Dao, T.T.B. and Van Cao, M. (2020), "Comparison studies of the receptance matrices of the isotropic homogeneous beam and the axially functionally graded beam carrying concentrated masses", Appl. Acoust., 160, 107160. https://doi.org/10.1016/j.apacoust.2019.107160.
- Panchore, V. and Ganguli, R. (2017), "Quadratic B-spline finite element method for a rotating non-uniform Rayleigh beam", Struct. Eng. Mech., 61(6), 765-773. http://doi.org/10.12989/sem.2017.61.6.765.
- Paul, A. and Das, D. (2018), "Free vibration behavior of a thermally post-buckled FG Timoshenko beam under large deflection using a tangent stiffness-based method", Mech. Adv. Mater. Struct., 25(12), 982-994. https://doi.org/10.1080/15376494.2017.1323140.
- Piovan, M.T. and Sampaio, R. (2009), "A study on the dynamics of rotating beams with functionally graded properties", J. Sound Vib., 327(1-2), 134-143. https://doi.org/10.1016/j.jsv.2009.06.015.
- Rajasekaran, S. and Bakhshi Khaniki, H. (2019), "Finite element static and dynamic analysis of axially functionally graded nonuniform small-scale beams based on nonlocal strain gradient theory", Mech. Adv. Mater. Struct., 26(14), 1245-1259. https://doi.org/10.1080/15376494.2018.1432797.
- Rao, J.S. (2011), History of Rotating Machinery Dynamics, Vol. 20, Springer Science & Business Media.
- Sahu, A., Pradhan, N. and Sarangi, S.K. (2020), "Static and dynamic analysis of smart functionally graded beams", Mater. Today: Proc., 24, 1618-1625. https://doi.org/10.1016/j.matpr.2020.04.483.
- Salighe, S. and Mohammadi, H. (2019), "Semi-active nonlinear vibration control of a functionally graded material rotating beam with uncertainties, using a frequency estimator", Compos. Struct., 210, 367-380. https://doi.org/10.1016/j.compstruct.2018.11.060.
- Sayyad, A.S. and Ghugal, Y.M. (2019), "Modeling and analysis of functionally graded sandwich beams: A review", Mech. Adv. Mater. Struct., 26(21), 1776-1795. https://doi.org/10.1080/15376494.2018.1447178.
- She, G.L. (2020), "Wave propagation of FG polymer composite nanoplates reinforced with GNPs", Steel Compos. Struct., 37, 27-35. http://doi.org/10.12989/scs.2020.37.1.027.
- She, G.L., Liu, H.B. and Karami, B. (2021), "Resonance analysis of composite curved microbeams reinforced with graphene nanoplatelets", Thin Wall. Struct., 160, 107407. https://doi.org/10.1016/j.tws.2020.107407.
- She, G.L., Ren, Y.R., Xiao, W.S. and Liu, H. (2018), "Study on thermal buckling and post-buckling behaviors of FGM tubes resting on elastic foundations", Struct. Eng. Mech., 66(6), 729-736. https://doi.org/10.12989/sem.2018.66.6.729.
- Simsek, M. (2019), "Some closed-form solutions for static, buckling, free and forced vibration of functionally graded (FG) nanobeams using nonlocal strain gradient theory", Compos. Struct., 224, 111041. https://doi.org/10.1016/j.compstruct.2019.111041.
- Sinir, S., Cevik, M. and Sinir, B.G. (2018), "Nonlinear free and forced vibration analyses of axially functionally graded Euler-Bernoulli beams with non-uniform cross-section", Compos. Part B: Eng., 148, 123-131. https://doi.org/10.1016/j.compositesb.2018.04.061.
- Soliman, A.E., Eltaher, M.A., Attia, M.A. and Alshorbagy, A.E. (2018), "Nonlinear transient analysis of FG pipe subjected to internal pressure and unsteady temperature in a natural gas facility", Struct. Eng. Mech., 66(1), 85-96. http://doi.org/10.12989/sem.2018.66.1.085.
- Storch, J. and Elishakoff, I. (2017), "Vibration of functionally graded rotating beams including the effects of nonlocal elasticity", AIAA J., 55(4), 1480-1486. https://doi.org/10.2514/1.J055038.
- Tian, J., Zhang, Z. and Hua, H. (2019), "Free vibration analysis of rotating functionally graded double-tapered beam including porosities", Int. J. Mech. Sci., 150, 526-538. https://doi.org/10.1016/j.ijmecsci.2018.10.056.
- Tufekci, E., Eroglu, U. and Aya, S.A. (2016), "Exact solution for in-plane static problems of circular beams made of functionally graded materials", Mech. Bas. Des. Struct. Mach., 44(4), 476-494. https://doi.org/10.1080/15397734.2015.1121398.
- Zhao, T., Ma, Y., Zhang, H. and Yang, J. (2020), "Coupled free vibration of spinning functionally graded porous double-bladed disk systems reinforced with graphene nanoplatelets", Mater., 13(24), 5610. https://doi.org/10.3390/ma13245610.
- Zhao, T., Yang, Y., Pan, H., Zhang, H. and Yuan, H. (2021b), "Free vibration analysis of a spinning porous nanocomposite blade reinforced with graphene nanoplatelets", J. Strain Anal. Eng. Des., 0309324720985758. https://doi.org/10.1177/0309324720985758.
- Zhao, T.Y., Cui, Y.S., Pan, H.G., Yuan, H.Q. and Yang, J. (2021d), "Free vibration analysis of a functionally graded graphene nanoplatelet reinforced disk-shaft assembly with whirl motion", Int. J. Mech. Sci., 197, 106335. https://doi.org/10.1016/j.ijmecsci.2021.106335.
- Zhao, T.Y., Jiang, L.P., Pan, H.G., Yang, J. and Kitipornchai, S. (2021f), "Coupled free vibration of a functionally graded pretwisted blade-shaft system reinforced with graphene nanoplatelets", Compos. Struct., 262, 113362. https://doi.org/10.1016/j.compstruct.2020.113362.
- Zhao, T.Y., Jiang, Z.Y., Zhao, Z., Xie, L.Y. and Yuan, H.Q. (2021c), "Modeling and free vibration analysis of rotating hub-blade assemblies reinforced with graphene nanoplatelets", J. Strain Anal. Eng. Des., 0309324720986904. https://doi.org/10.1177/0309324720986904.
- Zhao, T.Y., Liu, Z.F., Pan, H.G., Zhang, H.Y. and Yuan, H.Q. (2021a), "Vibration characteristics of functionally graded porous nanocomposite blade-disk-shaft rotor system reinforced with graphene nanoplatelets", Appl. Compos. Mater., 1-15. https://doi.org/10.1007/s10443-021-09880-4.
- Zhao, T.Y., Ma, Y., Zhang, H.Y., Pan, H.G. and Cai, Y. (2021e), "Free vibration analysis of a rotating graphene nanoplatelet reinforced pre-twist blade-disk assembly with a setting angle", Appl. Math. Model., 93, 578-596. https://doi.org/10.1016/j.apm.2020.12.025.