
IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.5, May 2021

217

Manuscript received May 5, 2021
Manuscript revised May 20, 2021
https://doi.org/10.22937/IJCSNS.2021.21.5.30

A Proposed Framework for the Automated Authorization Testing of
Mobile Applications

Ahmed Mohammed Alghamdi1* and Khalid Almarhabi 2,
amalghamdi@uj.edu.sa kamarhabi@uqu.edu.sa

1Department of Software Engineering, College of Computer Science and Engineering, University of Jeddah, Jeddah
21493, Saudi Arabia

2Department of Computer Science, College of Computing in Al-Qunfudah, Umm Al-Qura University, Makkah 24381,
Saudi Arabia

Abstract
Recent studies have indicated that mobile markets harbor
applications (apps) that are either malicious or vulnerable,
compromising millions of devices. Some studies indicate
that 96% of companies’ employees have used at least one
malicious app. Some app stores do not employ security
quality attributes regarding authorization, which is the
function of specifying access rights to access control
resources. However, well-defined access control policies can
prevent mobile apps from being malicious. The problem is
that those who oversee app market sites lack the mechanisms
necessary to assess mobile app security. Because thousands
of apps are constantly being added to or updated on mobile
app market sites, these security testing mechanisms must be
automated. This paper, therefore, introduces a new
mechanism for testing mobile app security, using white-box
testing in a way that is compatible with Bring Your Own
Device (BYOD) working environments. This framework
will benefit end-users, organizations that oversee app
markets, and employers who implement the BYOD trend.

Key words:
Authorization; BYOD; Mobile Applications, Testing

1. Introduction

The mobile applications (apps) marketplace is
creating a paradigm shift in how software is delivered
to end-users and enterprises. At the same time, the
term Bring Your Own Device (BYOD) has become a
widely-used technological trend, with more
organizations allowing employees to use their
personal mobile devices for work-related tasks. The
mobile apps marketplace has many benefits, including
the ability to quickly and effectively acquire, deliver,
maintain, and improve software. However, the growth
of this marketplace has increased security threats,
which target the platforms that use mobile apps. These
threats have, for instance, been seen in the Android
apps marketplace, in which many apps have been
infected by malware and spyware [1]. The Open Web
Application Security Project (OWASP)—a nonprofit

foundation that works to improve software security
[2]—has published the OWASP Top 10, which is a
standard awareness document for developers and web
app security specialists, providing a broad consensus
about the most critical security risks to web apps [3].
The first attack listed on the OWASP Top 10 is the
accessing and publication of user information without
user consent [2]. This attack occurs at the level of
platform security controls in mobile devices’
operating systems. However, some such risks can be
prevented by ensuring good access control strategies.
When a developer attempts to upload an app into an
app store, the best practice is to check the app’s access
control policies and permissions. This step will ensure
that apps meet the requirements for using permissions
legally and properly.

This paper focuses on the Android platform
because of its popularity, its status as an open-source
platform, and, in general, the vulnerability of the app
market. Access-control-related risks in mobile apps,
which are also the focus of this research, may be
identified as in Fig. 1. The types of informal access
described in Fig. 1 must be prevented, and this
research proposes a framework for detecting them.
This framework will quickly, accurately, and
automatically detect security vulnerabilities.

Security testing is a difficult task, especially as
methods for exploiting apps are being continuously
improved, and software and tools, requiring little
effort and experience, have been developed to stage
app attacks. Unlike functional testing, which tests the
software itself to ensure that it meets specifications
and works without errors, security testing is a form of
negative testing; it ensures that the software can
handle unexpected user behavior or invalid inputs.
These invalid inputs or unexpected user permissions
or behaviors will be fed into the framework developed
in this research to reveal possible security
vulnerabilities. Then, through negative testing, the
framework will compare these vulnerability results

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.5, May 2021

218

with those obtained from the app’s required
permissions and expected user behaviors.

Fig 1: Risks regarding app permissions that must be addressed

2. Mobile Apps

A mobile app may be defined in many ways, but,

simply, it is a software application or program
designed to run on a mobile device (a smartphone or
tablet), benefiting from its features and hardware
components. There are three types of mobile apps:
native, web, and hybrid [4], [5]. A native mobile app
is developed exclusively for a single mobile operating
system; that is, it is “native” to that specific platform
or device. A web app functions as a website; it uses a
web browser to run and is usually programmed via
HTML, JavaScript, or CSS. A hybrid mobile app is a
web app packed into a native app container, which
combines the previously mentioned types.

According to the Android developer guidelines,
each app has four main components: activities,
services, broadcast receivers, and content providers
[6]. Knowing the functions of each is important for
understanding who can detect and prevent unusual
behavior in an app. An activity is the entry point,
represented by a single user-interface screen and
consisting of several layouts. The service provides an
entry point for keeping an app running in the
background, performing long-running operations
or processes. A broadcast receiver enables events
outside of the regular user flow to be delivered to the
app, which allows it to respond to the system broadcast
or announcements messages, even if it is not currently
running. The content provider manages shared app

data, which can be stored in a file system on the web,
in a database, or in any other storage location
accessible to the app. Three of the four components
(activities, services, and broadcast receivers) are
activated by asynchronous intent messages. These
intent messages bind individual components to each
other at runtime, defining the actions to be performed
for the activities and services and defining the
announcement being broadcast. Activities and
services for an app have lifecycles, as shown in Fig. 2
and described in [6], [7]. This diagram explains an
app’s status and functionality for detecting and
preventing unusual behavior—a process that requires
monitoring each app’s files and formal permissions.

Fig 2: Application activity and service lifecycle in Android form [7]

3. Bring Your Own Device (BYOD)

There are various ways to achieve digital

transformation, and one of the most suitable is the
BYOD approach, which requires employees to use
their personal devices (smartphones, tablets, USB
drives, or computers) to connect to their organization’s
network and systems [8]. The BYOD concept was
popularized after Cisco adopted it in 2009 [9], and its
appeal has also been fueled by information technology
(IT) consumerism. Employers largely permit
employees to use their own mobile devices due to the
advanced features devices for personal use often

Does an app have
permisstion from

the end user?

No Yes

Does the app use
that permission in
an informal way?

No Yes

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.5, May 2021

219

possess. BYOD also has various advantages, such as
reducing costs, boosting user productivity, and
generating savings in procurement, software,
hardware, service agreements, insurance, and
licensing [10]. BYOD further enhances employee
mobility, productivity, satisfaction, and flexibility.

When implementing BYOD, several points must
be considered. First, BYOD boosts efficiency, as
every employee is an expert at using his or her device,
which minimizes the need for training [11]. Second,
BYOD also helps companies provide services at
minimum costs, even in rural areas. Third, employees
who use their own devices are quite diligent in doing
so [12], and, finally, information sharing and
communication are instantaneous and can be
accomplished from anywhere, even without local area
network (LAN) or Wi-Fi availability [13]. However,
for all its merits, increased BYOD implementation
also increases the presence of users’ extra-
organizational apps, which, by being active on the
users’ personal devices, could affect companies’
networks and infrastructures.

4 Related Work

The current authors’ work related to this subject
covers three categories: sandboxing, access control
policies, and analysis of software behavior.
Sandboxing is the security mechanism used to separate
running programs, reducing system failures or
preventing the spread of software vulnerabilities;
sandboxing is used to execute untested or untrusted
programs or codes from different sources, without
risking the overall operating system or host machine
[14], [15]. Android enforces app security by forcing
each app to be executed in a secure Android sandbox.
This sandbox is assigned a unique user identification
(UID) for each Android app, and each sandbox runs its
assigned app via its own process. In the device
memory, each instance of one app is isolated from
instances all other apps. To implement these
sandboxes, Android uses various safeguards, which
have been implemented and revised over time. The
original UID-based discretionary access control
(DAC) sandbox has been greatly expanded by these
enforcements [16].

Access control is a set of rules that define which

users have access to which services and what kinds of
access restrictions are in place. When many operating
systems, database management systems (DBMS), or
network control systems use various access
mechanisms, a user’s ability to access system-
protected resources may be improved. “Security aware

applications” and “security ignorant applications” may
be differentiated in any information system. Thus,
finalized apps rely on control facilities given by an
operating system, a DBMS, and some middleware. For
example, the main access control issue is observed
when suitable access control to data is applied in any
information system. Reports are made frequently
about poor access control management practices,
which result in security and privacy violations [17].

Several studies have researched methods of
detecting malicious software behaviors. Wang et al.
[18] present a virus detection method focused on
examining unusual behaviors revealed by application
programming interface (API) sequences in Windows
environments. This approach applies the Bayes
algorithm to identify suspicious behaviors and detect
viruses. Additionally, Beaucamps et al. [19] present a
method for detecting malware that involves
abstracting software behaviors. This technique
abstracts software traces by rewriting original
knowledge into abstract symbols that reflect their
features. Suspicious, malicious behaviors are then
detected by comparing trace abstractions. In terms of
testing mobile apps, several studies have aimed to
ensure mobile app quality via various techniques,
including regression testing [20]; Mobile Application
Testing (MAT), which involves functional,
performance, and compatibility testing [21]; and the
testing model published in [22]. An automated testing
tool has also been designed to detect errors in Android
apps on the cloud [7].

In summary, to the best of the current authors’
knowledge, no previously published research
compares app permissions, distinguishing between
formal and informal access to specific app resources.
However, this information is important for deciding
whether an app is trusted or untrusted; untrusted apps
should be excluded from mobile app markets.

5. Proposed Architecture

This section proposes a software architecture
design for testing the authorizations of mobile apps—
particularly Android apps (Fig. 3). This framework
takes an Android Application Package (APK) file as
input. Android apps are distributed and installed via
APKs, which are Java bytecode packets. If the source
code is not readily accessible, one of the available
tools, such as Dedexer, is used to reverse engineer the

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.5, May 2021

220

APK file. Then, a Call Graph Model and an
Architectural Model are built via the MoDisco method.

These two models serve as the foundation for this
research. The first error (the use of informal
permissions) can be found via the Architectural Model,
which represents an app’s design and user interface
configuration, made up of metadata for Android apps.
The second error (the informal use of formal
permissions) can be found via the Call Graph Model,
which describes all possible method invocation
sequences (execution traces) in an app.

As its name suggests, the Test Case and Data
Generator generates test cases and data by combining
the Architectural and Call Graph Models with all
authorization activities stored in a database. A test case
prototype is a skeleton Java file containing all the test
case’s common static elements. JUnit methods—for
example, setUp() and tearDown()—are used as part of
the template.

Testing will take place in four Android virtual
machines (VMs) to increase the testing speed. All
results will be collected from the VMs in an output
repository. Finally, the analyzer model will determine
whether the results are compatible with the required
permissions and whether there are any bad behaviors
in the Architectural and Call Graph Models.

5. Conclusion

Some app stores do not employ security quality
attributes regarding authorization, which is the
function of specifying access rights to access

control resources. However, well-defined access
control policies can prevent mobile apps from being
malicious. This paper has introduced a new framework
for determining app security detecting access control-
related risks, which will benefit end-users,
organizations overseeing app markets, and employers
who implement the BYOD trend.

References

[1] A. Shabtai, Y. Fledel, U. Kanonov, Y. Elovici, S. Doley

et al., “Google Android: A Comprehensive Security
Assessment,” IEEE Secur. Priv. Mag., vol. 8, no. 2, pp.
35–44, Mar. 2010, doi: 10.1109/MSP.2010.2.

[2] OWASP, “The Open Web Application Security Project
(OWASP),” 2020. [Online]. Available:
https://owasp.org/about/.

[3] OWASP, “OWASP Top Ten,” 2020. [Online].
Available: https://owasp.org/www-project-top-ten/.

[4] N. Serrano, J. Hernantes, and G. Gallardo, “Mobile
Web Apps,” IEEE Softw., vol. 30, no. 5, pp. 22–27,
2013, doi: 10.1109/MS.2013.111.

[5] S. Charkaoui, Z. Adraoui, and E. H. Benlahmar,
“Cross-platform mobile development approaches,” in
2014 Third IEEE International Colloquium in
Information Science and Technology (CIST), 2014, pp.
188–191, doi: 10.1109/CIST.2014.7016616.

[6] Android Developers, “Android developer guides,”
Google, 2021. [Online]. Available:
https://developer.android.com/docs.

[7] R. Mahmood, N. Esfahani, T. Kacem, N. Mirzaei, S.
Malek et al., “A whitebox approach for automated
security testing of Android applications on the cloud,”
in 2012 7th International Workshop on Automation of

Fig. 3: Our Proposed Architecture

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.5, May 2021

221

Software Test (AST), 2012, pp. 22–28, doi:
10.1109/IWAST.2012.6228986.

[8] K. Almarhabi, K. Jambi, F. Eassa, and O. Batarfi,
“Survey on access control and management issues in
cloud and BYOD environment,” Int. J. Comput. Sci.
Mob. Comput., vol. 6, no. 12, pp. 44–54, 2017.

[9] A. B. Garba, J. Armarego, D. Murray, and W.
Kenworthy, “Review of the information security and
privacy challenges in Bring Your Own Device (BYOD)
environments,” J. Inf. Priv. Secur., vol. 11, no. 1, pp.
38–54, 2015, doi: 10.1080/15536548.2015.1010985.

[10] K. Almarhabi, K. Jambi, F. Eassa, and O. Batarfi, “An
Evaluation of the Proposed Framework for Access
Control in the Cloud and BYOD Environment,” Int. J.
Adv. Comput. Sci. Appl., vol. 18, no. 2, pp. 144–152,
2018, doi: 10.14569/IJACSA.2018.091026.

[11] M. Finneran, “Mobile security gaps abound,”
Information Week, 2012.

[12] P. K. Gajar, A. Ghosh, and S. Rai, “BRING YOUR
OWN DEVICE (BYOD): SECURITY RISKS AND
MITIGATING STRATEGIES,” J. Glob. Res. Comput.
Sci., vol. 4, no. 4, pp. 62–70, 2013.

[13] N. Zahadat, P. Blessner, T. Blackburn, and B. A. Olson,
“BYOD security engineering: A framework and its
analysis,” Comput. Secur., vol. 55, pp. 81–99, 2015,
doi: 10.1016/j.cose.2015.06.011.

[14] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham,
“Efficient software-based fault isolation,” in
Proceedings of the fourteenth ACM symposium on
Operating systems principles - SOSP ’93, 1993, pp.
203–216, doi: 10.1145/168619.168635.

[15] V. Prevelakis and D. Spinellis, “Sandboxing
Applications,” in Proceedings of the FREENIX Track:
2001 USENIX Annual Technical Conference, 2001, pp.
119–126.

[16] Android Developers, “Application Sandbox,” Google,
2021. [Online]. Available:
https://source.android.com/security/app-
sandbox?hl=en.

[17] R. S. Sandhu and P. Samarati, “Access control:
principle and practice,” IEEE Commun. Mag., vol. 32,
no. 9, pp. 40–48, Sep. 1994, doi: 10.1109/35.312842.

[18] C. Wang, J. Pang, R. Zhao, and X. Liu, “Using API
Sequence and Bayes Algorithm to Detect Suspicious
Behavior,” in 2009 International Conference on
Communication Software and Networks, 2009, pp.
544–548, doi: 10.1109/ICCSN.2009.60.

[19] P. Beaucamps, I. Gnaedig, and J.-Y. Marion, “Behavior
Abstraction in Malware Analysis,” 2010, pp. 168–182.

[20] Q. Do, G. Yang, M. Che, D. Hui, and J. Ridgeway,
“Regression Test Selection for Android Applications,”
in 2016 IEEE/ACM International Conference on
Mobile Software Engineering and Systems
(MOBILESoft), 2016, pp. 27–28, doi:
10.1109/MobileSoft.2016.023.

[21] C. M. Prathibhan, A. Malini, N. Venkatesh, and K.
Sundarakantham, “An automated testing framework for

testing Android mobile applications in the cloud,” in
2014 IEEE International Conference on Advanced
Communications, Control and Computing
Technologies, 2014, pp. 1216–1219, doi:
10.1109/ICACCCT.2014.7019292.

[22] B. N. Puspika, B. Hendradjaya, and W. Danar Sunindyo,
“Towards an automated test sequence generation for
mobile application using colored Petri Net,” in 2015
International Conference on Electrical Engineering and
Informatics (ICEEI), 2015, pp. 445–449, doi:
10.1109/ICEEI.2015.7352542.

Ahmed Mohammed
Alghamdi is an assistant
professor at the Software
Engineering Department,
College of Computer Science
and Engineering, University of
Jeddah, Saudi Arabia. He got his
Ph.D. in Computer Science from
King Abdulaziz University,
Jeddah, Saudi Arabia. He

received his B.Sc. degree in Computer Science from King
Abdulaziz University, Jeddah, Saudi Arabia, in 2005 and the
first M.Sc. degree in Business Administration from King
Abdulaziz University, Jeddah, Saudi Arabia, in 2010. He
received the second master's degree in Internet Computing
and Network Security from Loughborough University, UK,
in 2013. Dr. Ahmed also has over 11 years of working
experience before attending the academic carrier. His
research interests include high-performance computing, big
data, distributed systems, programming models, software
engineering, BYOD, and software testing.

Khalid Ali Almarhabi is an
assistant professor at the
Computer Science Department,
College of Computing in Al-
Qunfudah, Umm Al-Qura
University, Saudi Arabia. He
got his Ph.D. in Computer
Science after studying this
degree at both King Abdulaziz
University, Jeddah, Saudi

Arabia, and Queensland University of Technology, Brisbane,
Australia. He also holds an MSc degree in Information
Technology from Queensland University of Technology,
Brisbane, Australia, in 2014. He holds a BSc degree in
computer science from King Abdulaziz University, Jeddah,
Saudi Arabia, in 2009. His research interests are information
security, BYODs research, access control policies,
information system management, and cloud computing.

