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Abstract. In this paper we investigate the Baer-Kaplansky theorem for module classes

on algebras of finite representation types over a field. To do this we construct finite

dimensional quiver algebras over any field.

1. Introduction

We consider associative rings R with identity; all modules considered are unitary
left R-modules. Throughout this paper K will be any field.

For a vertex x of a quiver Q, S(x) denotes the simple representation corre-
sponding to the vertex x. Moreover, P (x) (resp. I(x)) denotes the indecomposable
projective (resp. injective) representation corresponding to the vertex x. For short,
S(x) is replaced by x. With this convention a chain of length n ≥ 2 of the form

1
2
.
.
.
n

describes a uniserial module of length n with composition factors n, · · · , 2, 1. More-

over, a picture of the form
1

1 2
(resp.

1 2
2

) describes an indecompos-

able module M of length three such that the socle of M is isomorphic to 1⊕2 (resp.
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2), while the factor module M/socM is isomorphic to 1 (resp. 1 ⊕ 2). For more
background on quivers we refer to [1] and [11].

The aim of this paper is to construct classes of modules which satisfy or do
not satisfy the Baer-Kaplansky theorem defined on K-algebras, where K is any
field. When we look at the literature, we see that the Baer-Kaplansky theorem
states that any two torsion abelian groups having isomorphic endomorphism rings
are isomorphic [4, Theorem 108.1]. Finding other classes of abelian groups, and
more generally, of modules, for which a Baer-Kaplansky-type theorem is still true
remains an interesting problem. In [6], Ivanov and Vámos called such classes Baer-
Kaplanksy classes. For example, the class of finitely generated abelian groups is
Baer-Kaplansky (e.g., see [7, Example 1.3]). Over commutative rings, there are sev-
eral Baer-Kaplansky classes of modules, but there are relatively few known over non-
commutative rings. In particular, we know from Morita’s paper ([8, Lemma 7.4])
that the class of all modules over a primary artinian uniserial ring is Baer-Kaplansky.
Moreover, we know from Ivanov’s paper ([5, Theorem 9]) that the class of all mod-
ules over a non-singular artinian serial ring is Baer-Kaplansky.

These are the motivating and leading ideas in our investigation of Baer-Kaplansky
classes over non-commutative algebras.

This paper is organized as follows. In Section 1 we recall some definitions and
conventions. In Section 2 we collect all the results. We begin with some negative
results. As we shall see, rather few classes of modules over non-commutative al-
gebras fail to be Baer-Kaplansky. In Example 2.1, we construct a class of simple
injective left R-modules which is not Baer-Kaplansky over a hereditary K-algebra
R of finite representation type. In Example 2.3, we construct a class of simple left
R-modules which is not Baer-Kaplansky over a non-hereditary K-algebra R of finite
representation type. Also we obtain some positive results by dealing with classes of
modules with a rigid structure, containing two indecomposable modules and closed
under finite direct sums. Indeed the endomorphism rings of the two indecomposable
modules always have dimension 1 and 2, and the vector spaces of the morphisms
between two indecomposable non-isomorphic modules have dimension ≤ 2. As for
the invariants, some of these classes admit the number of indecomposable direct
summands and the dimension of the endomorphism ring as a complete set of invari-
ants (Example 2.8 and Example 2.10). However this property is not always true
for a Baer-Kaplansky class of finitely generated projective (resp. injective) modules
over a finite dimensional algebra (Example 2.6.)

2. Results

Example 2.1. There is a hereditary K-algebra R of finite representation type and
a class of R-modules such that Baer-Kaplansky theorem fails.

Construction: Let R be the K-algebra given by the quiver 1 −→ 3 ←− 2. Then

1, 2, 3,
1
3

,
2
3

and
1 2

3
are the indecomposable left R-modules. Let M be
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the R-module I(3) =
1 2

3
. Note that P (1) =

1
3

, P (2) =
2
3

and P (3) = 3.

The lattice of submodules of M is

M

P (1) P (2)

P (3)

0

and we have I(3)/P (1) � I(3)/P (2). Also EndR(I(3)/P (1)) ∼= EndR(I(3)/P (2)) ∼=
K because I(3)/P (1) and I(3)/P (2) are one dimensional vector spaces. Therefore
the class of simple injective left R-modules {I(3)/P (1), I(3)/P (2)} = {S(2), S(1)}
is not Baer-Kaplansky.

Remark 2.2. Let R be a K-algebra of finite representation type such that K is the
endomorphism ring of any indecomposable left R-module. Then Baer-Kaplansky
theorem fails for any class with more than one indecomposable module. Moreover
Baer-Kaplansky theorem holds for any class of the form {Mn | n ≥ 1}, where M is
an indecomposable left R-module.

Example 2.3. There is a non-hereditary K-algebra R of finite representation type
and a class of R-modules such that Baer-Kaplansky theorem fails.

Construction: Let R be the K-algebra given by the quiver 1
a→ 2 bb b with

relations ba = b2 = 0. Then the indecomposable left R-modules are 1, 2,
1
2

,
2
2

and
1 2

2
. Let M = I(2) =

1 2
2

. Note that P (1) =
1
2

, P (2) =
2
2

and S(2) = 2. Also in this case the lattice of submodules of M is of the form

M

P (1) P (2)

S(2)

0
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with I(2)/P (1) � I(2)/P (2). Since I(2)/P (1) and I(2)/P (2) are one dimensional
vector spaces, EndR(I(2)/P (1)) ∼= EndR(I(2)/P (2)) ∼= K. Then the class of simple
left R-modules {I(2)/P (1), I(2)/P (2)} = {S(2), S(1)} is not Baer-Kaplansky. Note
that S(1) is injective, while S(2) has infinite injective dimension. Here S(2) has a
minimal injective resolution of the form

0 −→ S(2) = 2 −→ 1 2
2

−→ 1⊕ 1 2
2

−→ 1⊕ 1 2
2

−→ · · · .

Moreover both simple modules have infinite projective dimension. The minimal
projective resolutions of S(1) and S(2) are of the form

· · · −→ 2
2
−→ 2

2
−→ 1

2
−→ 1 = S(1) −→ 0

and

· · · −→ 2
2
−→ 2

2
−→ 2

2
−→ 2 = S(2) −→ 0.

Proposition 2.4. Let R be a K-algebra admitting three non-isomorphic modules
M with the following properties:

(1) M has exactly three non-zero proper submodules N1, N2 and N1 ∩N2.

(2) M/N1 is not isomorphic to M/N2.

(3) EndR(M/Ni) ∼= K for i = 1, 2.

Then R is not commutative and there is a class (of non-uniserial modules) which
is not Baer-Kaplansky.

Proof. The existence of a module satisfying (1), (2) and (3) implies that R is
not commutative [3, Remark 2.2]. On the other hand the endomorphism ring of
a module satisfying (1), (2) and (3) is either isomorphic to K or isomorphic to
K[x]/(x2) [2, Theorem 3.8]. Since there exist three non-isomorphic modules M1,M2

and M3 satisfying (1), (2) and (3), without loss of generality we may assume that
{M1,M2} is not a Baer-Kaplansky class. �

We will use the next lemma to construct Baer-Kaplansky classes with infinitely
many modules and exactly two indecomposable modules. In the sequel given a
module M we will denote by addM the class of all finite direct sums of direct
summands of M .

Lemma 2.5. Let R be a K-algebra of finite dimension and let U and V be two
finite dimensional left R-modules with the following properties: EndR(U) ∼= K,
EndR(V ) ∼= K[x]/(x2), HomR(U, V ) = 0, HomR(V,U) ∼= K. Then the class
add(U ⊕ V ) is a Baer-Kaplansky class. Moreover the number of indecomposable
direct summands and the dimension of the endomorphism ring are not a complete
set of invariants for the modules in add(U ⊕ V ).
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Proof. Since U and V are indecomposable modules, it follows that add(U ⊕V ) con-
sists of finite direct sums of copies of U and V . Let X be a non-zero left R-module
of the form Um ⊕ V n with m,n ∈ N. Let A = EndR(Um), B = EndR(V n) and
let H = HomR(V n, Um). Then A is isomorphic to the full matrix algebra Mm(K)
and B is isomorphic to the full matrix algebra Mn(K[x]/(x2)). Finally H is an
A-B-bimodule of dimension mn. Let T = EndR(X). Then our hypotheses on U, V
and X imply that

(1) T = EndR(X) is isomorphic to the matrix algebra

[
A H
0 B

]
.

This means that the identity of T is the sum of primitive idempotents e1, · · · , em,
ε1, · · · , εn such that

(2) The regular module TT is the direct sum of the simple isomorphic modules
Te1, · · · , T em (of dimension m) and of the indecomposable non-simple isomorphic
modules Tε1, · · · , T εn (of dimension m+ 2n).

Let Y be a module in add(U ⊕V ) such that EndR(X) ∼= EndR(Y ). Then there
exist p, q ∈ N such that Y ∼= Up ⊕ V q, and so

(3) EndR(Y ) is the direct sum of p simple isomorphic modules (of dimension p)
and q indecomposable non-simple isomorphic modules (of dimension p+ 2q).

Since T is a finite dimensional algebra, we know from [9, p. 66] that the category
modT of finitely generated T -modules is a Krull-Schmidt category, that is a category
where the Krull-Remark-Schmidt theorem [10, p. 3] holds. Consequently we deduce
from (2) and (3) that m = p and n = q, and so X ∼= Y .

We finally note that U2 and U ⊕V are non-isomorphic modules with endomor-
phism ring of dimension 4. More generally, if m,n, s ∈ N and s ≤ m, then Um⊕V n

and Um−s ⊕ V n+s have endomorphism ring of the same dimension m2 +mn+ 2n2

if and only if ms− 3ns− 2s2 = 0. The lemma is proved. �

Example 2.6. There is a non-commutative K-algebra R of finite representation
type such that the class of finitely generated projective (resp. injective) modules is
a Baer-Kaplansky class with the property described in Lemma 2.5.

Construction: Let R be the algebra considered in Example 2.3, given by the
quiver 1

a→ 2 bb b with relations ba = b2 = 0. Then the classes of finitely gener-

ated projective and injective modules are add(
1
2
⊕ 2

2
) and add(1 ⊕ 1 2

2
)

respectively. Moreover we clearly have EndR(
1
2

) ∼= K ∼= EndR(1), EndR(
2
2

) ∼=

K[x]/(x2) ∼= EndR(
1 2

2
), HomR(

1
2
,

2
2

) = 0 = HomR(1,
1 2

2
) and

HomR(
2
2
,

1
2

) ∼= K ∼= HomR(
1 2

2
, 1). Hence the conclusion that add(

1
2
⊕

2
2

) and add(1⊕ 1 2
2

) are Baer-Kaplansky classes with the desired property

follows from Lemma 2.5.
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We will use the next lemma to obtain Baer-Kaplansky classes C with the prop-
erty that HomR(L,M) 6= 0 if L and M are two non-zero modules in C.

Lemma 2.7. Let R be a K-algebra of finite dimension and let U and V be
two finite dimensional left R-modules with the following properties: EndR(U) ∼=
K,EndR(V ) ∼= K[x]/(x2),HomR(U, V ) ∼= K ∼= HomR(V,U). Then the class add(U⊕
V ) is a Baer-Kaplansky class. Moreover the number of indecomposable direct sum-
mands and the dimension of the endomorphism ring are a complete set of invariants
for the modules in add(U ⊕ V ).

Proof. We first note that for any m,n ∈ N we have dimEndR(Um ⊕ V n) = m2 +
2mn + 2n2. Assume that s is a natural number ≤ m such that dimEndR(Um−s ⊕
V n+s) = dim(Um ⊕ V n). Then we have 2ns+ s2 = 0. Consequently s = 0. Hence
add(U ⊕ V ) is a Baer-Kaplansky class with the desired property. �

Example 2.8. There is a non-hereditary K-algebra R of finite representation type,
such that any indecomposable module is uniserial, with the following properties:

(1) The class of simple modules is not Baer-Kaplansky.

(2) Let P and I be the classes of finitely generated projective modules and finitely
generated injective modules, respectively and let C be the class of finitely
generated modules of projective and injective dimension at most one. Then P,
I and C are Baer-Kaplansky classes. Moreover the number of indecomposable
direct summands and the dimension of the endomorphism ring are a complete
set of invariants for the modules in P, I and C.

Construction: Let R be the K-algebra given by the quiver 1
a

�
b

2 with relation

ab = 0. Then 1, 2,
1
2
,

2
1

and
1
2
1

are the indecomposable modules. Since 1 and

2 are non-isomorphic one dimensional modules, (1) clearly holds. On the other

hand we have P = add(
2
1
⊕

1
2
1

), I = add(
1
2
⊕

1
2
1

) and C = add(1 ⊕
1
2
1

).

Consequently (2) follows from Lemma 2.7.

We will use the next lemma to obtain Baer-Kaplansky classes C with more
complicated Hom spaces between indecomposable non-isomorphic modules in C.

Lemma 2.9. Let R be a K-algebra of finite dimension and let U and V be
two finite dimensional left R-modules with the following properties: EndR(U) ∼=
K,EndR(V ) ∼= K[x]/(x2),HomR(U, V ) = 0 and dimHomR(V,U) = 2. Then the
class add(U ⊕ V ) is a Baer-Kaplansky class with the property described in Lemma
2.7.

Proof. Our hypotheses imply that dimEndR(Um ⊕ V n) = m2 + 2mn+ 2n2 for any
m,n ∈ N. Hence the conclusion follows from the proof of Lemma 2.7. �
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Example 2.10. There is a K-algebra R of finite dimension such that the classes
P and I of finitely generated projective and finitely generated injective modules
are Baer-Kaplansky, but the class C of finitely generated modules of projective and
injective dimension at most one is not Baer-Kaplansky. Moreover the number of
indecomposable direct summands and the dimension of the endomorphism ring are
a complete set of invariants for the modules in P and I.

Construction: Let R be the K-algebra given by the quiver 1
a→ 2 bb b with

relation b2 = 0. Then we have P = add(
1
2
2
⊕ 2

2
) and I = add(1 ⊕

1
1 2

2
).

This observation and Lemma 2.9 imply that P and I are Baer-Kaplansky classes
with the desired property. We also note that there exist exact sequences of the form

0 −→ 2
2
−→

1
1 2

2
−→ 1⊕ 1 −→ 0,

0 −→ 1 2
2

−→
1

1 2
2

−→ 1 −→ 0

and 0 −→ 2
2
−→

1
2
2
⊕ 2

2
−→ 1 2

2
−→ 0.

Hence
2
2

and
1 2

2
are in C. Since EndR(

2
2

) ∼= K[x]/(x2) ∼= EndR(
1 2

2
),

we conclude that C is not Baer-Kaplansky.

Proposition 2.11. Let A and B be finite dimensional K-algebras such that there
is an epimorphism from A to B. For any algebra R let PR and IR denote the
classes of finitely generated projective and finitely generated injective left R-modules,
respectively. Among others the following cases are possible:

(1) PA = IA is not a Baer-Kaplansky class, while PB and IB are Baer-Kaplansky
classes. Moreover the number of indecomposable direct summands and the
dimension of the endomorphism ring are a complete set of invariants for the
modules in PB and IB.

(2) PA, IA,PB and IB are Baer-Kaplansky classes. Moreover the number of
indecomposable direct summands and the dimension of the endomorphism
ring are (resp. are not) a complete set of invariants for the modules in PA

and IA (resp. PB and IB).

Proof. (1) Let A be the K-algebra given by the quiver 1
a
�
b

2 with relations aba =

bab = 0. Then we have PA = IA = add(
1
2
1
⊕

2
1
2

). Since EndA(
1
2
1

) ∼= K[x]/(x2) ∼=
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EndA(
2
1
2

), it follows that PA = IA is not Baer-Kaplansky. Let B denote the

algebra considered in Example 2.8, given by the quiver 1
a
�
b

2 with relation ab = 0.

Then there is an epimorphism A→ B and Lemma 2.7 implies that (1) holds.

(2) Let A be the algebra considered in Example 2.10, given by the quiver 1
a→

2 bb b with relation b2 = 0. Next let B be the algebra considered in Example 2.6,
given by the quiver 1

a→ 2 bb b with relations ba = b2 = 0. Also in this case there
is an epimorphism A→ B. Hence (2) holds. �

We will use the next lemma to investigate classes of modules of finite projective
or injective dimension.

Lemma 2.12. Let R be the K-algebra of finite dimension and let U and V be two
finite dimensional left R-modules such that EndR(U) ∼= K,EndR(V ) ∼= K[x]/(x2),
HomR(U, V ) ∼= K and HomR(V,U) = 0. Then the class add(U ⊕ V ) is a Baer-
Kaplansky class. Moreover the number of indecomposable direct summands and the
dimension of the endomorphism ring are not a complete set of invariants for the
modules in add(U ⊕ V ).

Proof. The proof is similar to the proof of Lemma 2.5. More precisely, let X
be a non-zero left R-module of the form Um ⊕ V n with m,n ∈ N. Let A =
EndR(Um), B = EndR(V n), H = HomR(Um, V n), T = EndR(X). Then A is
isomorphic to the full matrix algebra Mm(K), B is isomorphic to the full matrix
algebra Mn(K[x]/(x2)). H is a B-A-bimodule of dimension mn and T is isomorphic

to the matrix algebra

[
A 0
H B

]
. Consequently, the following facts hold:

(1) dimT = m2 + 2n2 +mn.

(2) The identity of T is the sum of m+ n primitive idempotents.

(3) The category of finitely generated left T -modules is a Krull-Schmidt category
[9, page 66].

(4) The regular module TT is the direct sum of m indecomposable non-simple
isomorphic left T -modules (of dimension m+ n) and of n simple isomorphic
left T -modules (of dimension 2n).

From now on we continue as in the last part of the proof of Lemma 2.5.. �

Example 2.13. There exist finite dimensional K-algebras A and B with the fol-
lowing properties:

(1) The classes of finitely generated projective (resp. injective) left modules over
A and B are Baer-Kaplansky classes.

(2) Any finitely generated left A-module of finite projective dimension is projec-
tive.
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(3) Any finitely generated left B-module of finite injective dimension is injective.

(4) The class of finitely generated left A-modules of finite injective dimension is
not a Baer-Kaplansky class.

(5) The class of finitely generated left B-modules of finite projective dimension
is not a Baer-Kaplansky class.

Construction: Let A be the algebra of Example 2.6, given by the quiver 1
a→

2 bb b with relations ba = b2 = 0. Next let B be the algebra, isomorphic

to Aop, given by the quiver a << 1
b→ 2 with relations a2 = ba = 0. Then

1, 2,
1
1
,

1
2
,

1
1 2

are the indecomposable left B-modules, while

add(2⊕ 1
1 2

) and add(
1
2
⊕ 1

1
)

are the classes of finitely generated projective and finitely generated injective left
B-modules, respectively. Hence (1) immediately follows from Example 2.6 (or

Lemma 2.5) and Lemma 2.12. Since the left A-modules 1, 2,
1 2

2
have in-

finite projective dimension, we conclude that (2) holds. Dually, the left B-modules

1, 2,
1

1 2
have infinite injective dimension. Hence also (3) holds. Moreover

the projective left A-module
2
2

has injective dimension one, and we clearly have

EndA(
2
2

) ∼= K[x]/(x2) ∼= EndA(
1 2

2
). Consequently (4) holds. Finally the

injective left B-module
1
1

has projective dimension one, and we obviously have

EndB(
1
1

) ∼= K[x]/(x2) ∼= EndB(
1

1 2
). Hence also (5) holds.
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[5] G. Ivanov, Generalizing the Baer-Kaplansky theorem, J. Pure Appl. Algebra,
133(1998), 107–115.
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