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ABSTRACT. In this paper we investigate the Baer-Kaplansky theorem for module classes
on algebras of finite representation types over a field. To do this we construct finite
dimensional quiver algebras over any field.

1. Introduction

We consider associative rings R with identity; all modules considered are unitary
left R-modules. Throughout this paper K will be any field.

For a vertex x of a quiver @, S(z) denotes the simple representation corre-
sponding to the vertex x. Moreover, P(z) (resp. I(x)) denotes the indecomposable
projective (resp. injective) representation corresponding to the vertex x. For short,
S(z) is replaced by x. With this convention a chain of length n > 2 of the form

1
2

n

describes a uniserial module of length n with composition factors n,--- ,2,1. More-
. 1 1 2 . .

over, a picture of the form 1 9 (resp. 9 ) describes an indecompos-

able module M of length three such that the socle of M is isomorphic to 1®2 (resp.
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2), while the factor module M/socM is isomorphic to 1 (resp. 1@ 2). For more
background on quivers we refer to [1] and [11].

The aim of this paper is to construct classes of modules which satisfy or do
not satisfy the Baer-Kaplansky theorem defined on K-algebras, where K is any
field. When we look at the literature, we see that the Baer-Kaplansky theorem
states that any two torsion abelian groups having isomorphic endomorphism rings
are isomorphic [4, Theorem 108.1]. Finding other classes of abelian groups, and
more generally, of modules, for which a Baer-Kaplansky-type theorem is still true
remains an interesting problem. In [6], Ivanov and Vamos called such classes Baer-
Kaplanksy classes. For example, the class of finitely generated abelian groups is
Baer-Kaplansky (e.g., see [7, Example 1.3]). Over commutative rings, there are sev-
eral Baer-Kaplansky classes of modules, but there are relatively few known over non-
commutative rings. In particular, we know from Morita’s paper ([8, Lemma 7.4])
that the class of all modules over a primary artinian uniserial ring is Baer-Kaplansky.
Moreover, we know from Ivanov’s paper ([5, Theorem 9]) that the class of all mod-
ules over a non-singular artinian serial ring is Baer-Kaplansky.

These are the motivating and leading ideas in our investigation of Baer-Kaplansky
classes over non-commutative algebras.

This paper is organized as follows. In Section 1 we recall some definitions and
conventions. In Section 2 we collect all the results. We begin with some negative
results. As we shall see, rather few classes of modules over non-commutative al-
gebras fail to be Baer-Kaplansky. In Example 2.1, we construct a class of simple
injective left R-modules which is not Baer-Kaplansky over a hereditary K-algebra
R of finite representation type. In Example 2.3, we construct a class of simple left
R-modules which is not Baer-Kaplansky over a non-hereditary K-algebra R of finite
representation type. Also we obtain some positive results by dealing with classes of
modules with a rigid structure, containing two indecomposable modules and closed
under finite direct sums. Indeed the endomorphism rings of the two indecomposable
modules always have dimension 1 and 2, and the vector spaces of the morphisms
between two indecomposable non-isomorphic modules have dimension < 2. As for
the invariants, some of these classes admit the number of indecomposable direct
summands and the dimension of the endomorphism ring as a complete set of invari-
ants (Example 2.8 and Example 2.10). However this property is not always true
for a Baer-Kaplansky class of finitely generated projective (resp. injective) modules
over a finite dimensional algebra (Example 2.6.)

2. Results

Example 2.1. There is a hereditary K-algebra R of finite representation type and
a class of R-modules such that Baer-Kaplansky theorem fails.

Construction: Let R be the K-algebra given by the quiver 1 — 3 <— 2. Then

1,2, 3, :1)) , g and 1 3 2 are the indecomposable left R-modules. Let M be
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1 P(2)= 2 and P(3) = 3.

the R-module I(3) = 3 2 Note that P(1) = :13 , 5

The lattice of submodules of M is

and we have I(3)/P(1) 2 1(3)/P(2). Also Endr(I(3)/P(1)) 2 Endgr(I(3)/P(2)) =
K because I(3)/P(1) and I1(3)/P(2) are one dimensional vector spaces. Therefore
the class of simple injective left R-modules {I(3)/P(1),1(3)/P(2)} = {S(2),5(1)}
is not Baer-Kaplansky.

Remark 2.2. Let R be a K-algebra of finite representation type such that K is the
endomorphism ring of any indecomposable left R-module. Then Baer-Kaplansky
theorem fails for any class with more than one indecomposable module. Moreover
Baer-Kaplansky theorem holds for any class of the form {M"™ | n > 1}, where M is
an indecomposable left R-module.

Example 2.3. There is a non-hereditary K-algebra R of finite representation type
and a class of R-modules such that Baer-Kaplansky theorem fails.

Construction: Let R be the K-algebra given by the quiver 1 = 2 Q b with

relations ba = b?> = 0. Then the indecomposable left R-modules are 1,2, 9 ;
and L 9 2 Let M = 1(2) = 1 9 2 . Note that P(1) = ;,P(2): g

and S(2) = 2. Also in this case the lattice of submodules of M is of the form
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with I(2)/P(1) 2 1(2)/P(2). Since I1(2)/P(1) and I(2)/P(2) are one dimensional
vector spaces, Endgr(1(2)/P(1)) 2 Endg(I(2)/P(2)) = K. Then the class of simple
left R-modules {I(2)/P(1),1(2)/P(2)} = {S(2),5(1)} is not Baer-Kaplansky. Note
that S(1) is injective, while S(2) has infinite injective dimension. Here S(2) has a
minimal injective resolution of the form

0—S5(2)=2— 1 9 2 — 16 1 9 2 — 1 1 9 2 —

Moreover both simple modules have infinite projective dimension. The minimal
projective resolutions of S(1) and S(2) are of the form

— ; — ; — L —1=5(1)—0
and
2 2 2
— 5 T g T 4 —2=5(2)—0

Proposition 2.4. Let R be a K-algebra admitting three non-isomorphic modules
M with the following properties:

(1) M has exactly three non-zero proper submodules N1, No and N1 N Na.
(2) M/Ny is not isomorphic to M/N,.
(3) Endgr(M/N;) 2 K fori=1,2.

Then R is not commutative and there is a class (of non-uniserial modules) which
ts not Baer-Kaplansky.

Proof. The existence of a module satisfying (1), (2) and (3) implies that R is
not commutative [3, Remark 2.2]. On the other hand the endomorphism ring of
a module satisfying (1), (2) and (3) is either isomorphic to K or isomorphic to
K|[z]/(2?) [2, Theorem 3.8]. Since there exist three non-isomorphic modules My, M
and M3 satisfying (1), (2) and (3), without loss of generality we may assume that
{My, M5} is not a Baer-Kaplansky class. O

We will use the next lemma to construct Baer-Kaplansky classes with infinitely
many modules and exactly two indecomposable modules. In the sequel given a
module M we will denote by addM the class of all finite direct sums of direct
summands of M.

Lemma 2.5. Let R be a K-algebra of finite dimension and let U and V' be two
finite dimensional left R-modules with the following properties: Endg(U) = K,
Endg(V) = Klz]/(2?), Homg(U,V) = 0, Homg(V,U) = K. Then the class
add(U & V) is a Baer-Kaplansky class. Moreover the number of indecomposable
direct summands and the dimension of the endomorphism ring are not a complete
set of invariants for the modules in add(U & V).
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Proof. Since U and V are indecomposable modules, it follows that add(U @ V') con-
sists of finite direct sums of copies of U and V. Let X be a non-zero left R-module
of the form U™ & V"™ with m,n € N. Let A = Endg(U™), B = Endg(V") and
let H = Hompg(V™,U™). Then A is isomorphic to the full matrix algebra M,,(K)
and B is isomorphic to the full matrix algebra M, (K[z]/(z?)). Finally H is an
A-B-bimodule of dimension mn. Let T = Endg(X). Then our hypotheses on U,V
and X imply that

(1) T'= Endg(X) is isomorphic to the matrix algebra [é g} .

This means that the identity of T is the sum of primitive idempotents ey, - - - , e,
€1, ,€, such that

(2) The regular module +T is the direct sum of the simple isomorphic modules
Tey, - ,Tey (of dimension m) and of the indecomposable non-simple isomorphic
modules Teq, -+ ,Te, (of dimension m + 2n).

Let Y be a module in add(U @ V) such that Endg(X) = Endg(Y"). Then there
exist p,q € N such that Y 2 UP @ V9, and so

(3) Endg(Y) is the direct sum of p simple isomorphic modules (of dimension p)
and ¢ indecomposable non-simple isomorphic modules (of dimension p + 2q).

Since T is a finite dimensional algebra, we know from [9, p. 66] that the category
modT of finitely generated T-modules is a Krull-Schmidt category, that is a category
where the Krull-Remark-Schmidt theorem [10, p. 3] holds. Consequently we deduce
from (2) and (3) that m =p and n = ¢, and so X 2 Y.

We finally note that U? and U @ V are non-isomorphic modules with endomor-
phism ring of dimension 4. More generally, if m,n,s € Nand s < m, then U™ V"
and U™~* @ V"** have endomorphism ring of the same dimension m? 4+ mn + 2n?
if and only if ms — 3ns — 252 = 0. The lemma is proved. g

Example 2.6. There is a non-commutative K-algebra R of finite representation
type such that the class of finitely generated projective (resp. injective) modules is
a Baer-Kaplansky class with the property described in Lemma 2.5.

Construction: Let R be the algebra considered in Example 2.3, given by the
quiver 1 % 2 Q b with relations ba = b2 = 0. Then the classes of finitely gener-

ated projective and injective modules are add( ; D ) and add(1 @ L 9 2 )
respectively. Moreover we clearly have Endg( ; ) 2 K = Endg(1), Endg( ; ) =
Klr]/(s?) = Bndp( ', °). Homg( ). > ) =0=Homp(l, ' , *)and

Hompg( ; , é )= K = Homp( 1 9 2 ,1). Hence the conclusion that add( ; @

2 ) and add(1® 1 2 ) are Baer-Kaplansky classes with the desired property

2 2
follows from Lemma 2.5.

217



218 G. D’Este and D. K. Tiitiincii

We will use the next lemma to obtain Baer-Kaplansky classes C with the prop-
erty that Homp(L, M) # 0 if L and M are two non-zero modules in C.

Lemma 2.7. Let R be a K-algebra of finite dimension and let U and V be
two finite dimensional left R-modules with the following properties: Endg(U) =
K,Endg(V) =2 K[z]/(2?), Homg(U,V) 2 K = Hompg(V,U). Then the class add(U®
V) is a Baer-Kaplansky class. Moreover the number of indecomposable direct sum-

mands and the dimension of the endomorphism ring are a complete set of invariants
for the modules in add(U @ V).

Proof. We first note that for any m,n € N we have dimEndg(U™ & V") = m? +
2mn + 2n?. Assume that s is a natural number < m such that dimEndg (U™ * @
Vnts) = dim(U™ @ V™). Then we have 2ns + s? = 0. Consequently s = 0. Hence
add(U @ V) is a Baer-Kaplansky class with the desired property. O

Example 2.8. There is a non-hereditary K-algebra R of finite representation type,
such that any indecomposable module is uniserial, with the following properties:

(1) The class of simple modules is not Baer-Kaplansky.

(2) Let P and Z be the classes of finitely generated projective modules and finitely
generated injective modules, respectively and let C be the class of finitely
generated modules of projective and injective dimension at most one. Then P,
7 and C are Baer-Kaplansky classes. Moreover the number of indecomposable
direct summands and the dimension of the endomorphism ring are a complete
set of invariants for the modules in P,Z and C.

a
Construction: Let R be the K-algebra given by the quiver 1 & 2 with relation
b

1

ab = 0. Then 1,2, ; , ? and 2 are the indecomposable modules. Since 1 and
1

2 are non-isomorphic one dimensional modules, (1) clearly holds. On the other
1 1 1

hand we have P = add( ? ® 2),Z = add( ; ® 2)and C =add(l® 2).
1 1 1

Consequently (2) follows from Lemma 2.7.

We will use the next lemma to obtain Baer-Kaplansky classes C with more
complicated Hom spaces between indecomposable non-isomorphic modules in C.

Lemma 2.9. Let R be a K-algebra of finite dimension and let U and V be
two finite dimensional left R-modules with the following properties: Endg(U) =
K,Endg(V) = K[z]/(2?),Homgr(U,V) = 0 and dimHompg(V,U) = 2. Then the
class add(U ® V) is a Baer-Kaplansky class with the property described in Lemma
2.7.

Proof. Our hypotheses imply that dimEndg(U™ @& V") = m? + 2mn + 2n? for any
m,n € N. Hence the conclusion follows from the proof of Lemma 2.7. O
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Example 2.10. There is a K-algebra R of finite dimension such that the classes
P and 7 of finitely generated projective and finitely generated injective modules
are Baer-Kaplansky, but the class C of finitely generated modules of projective and
injective dimension at most one is not Baer-Kaplansky. Moreover the number of
indecomposable direct summands and the dimension of the endomorphism ring are
a complete set of invariants for the modules in P and Z.

Construction: Let R be the K-algebra given by the quiver 1 % 2 Q b with
1 1

relation b2 = 0. Then we have P = add( 2 & ; Jand Z =add(1@ 1 2).
2 2

This observation and Lemma 2.9 imply that P and Z are Baer-Kaplansky classes

with the desired property. We also note that there exist exact sequences of the form

1
0— 3 — 1 2 —1¢1—0,
2
1 2 L
0— 9 — 1 2 —1—0
2
2 L 2 1 2
and 0— — 2 & — — 0.
2 9 2 2
Hence g and 1 9 2 arein C. Since Endg( ; ) = K[z]/(2%) 2 Endg( 1 9 2

we conclude that C is not Baer-Kaplansky.

Proposition 2.11. Let A and B be finite dimensional K-algebras such that there
18 an epimorphism from A to B. For any algebra R let Pr and Ir denote the
classes of finitely generated projective and finitely generated injective left R-modules,
respectively. Among others the following cases are possible:

(1) Pa =Za is not a Baer-Kaplansky class, while P and Ip are Baer-Kaplansky
classes. Moreover the number of indecomposable direct summands and the
dimension of the endomorphism ring are a complete set of invariants for the
modules in Pg and Ipg.

(2) Pa,Za,Pp and Ip are Baer-Kaplansky classes. Moreover the number of
indecomposable direct summands and the dimension of the endomorphism
ring are (resp. are not) a complete set of invariants for the modules in P4
and Ta (resp. Pp and Ig).

Proof. (1) Let A be the K-algebra given by the quiver 1 é 2 with relations aba =
b
2
@ 1 ). Since End4(
2

I

bab = 0. Then we have Py = Z4 = add( ) = Klx]/(2?)

— N =
L
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2
Enda( 1), it follows that P4 = Z,4 is not Baer-Kaplansky. Let B denote the
2

a
algebra considered in Example 2.8, given by the quiver 1 & 2 with relation ab = 0.

b
Then there is an epimorphism A — B and Lemma 2.7 implies that (1) holds.
2) Let A be the algebra considered in Example 2.10, given by the quiver 1 5

2 b with relation b?> = 0. Next let B be the algebra considered in Example 2.6,
given by the quiver 1 % 2 b with relations ba = b? = 0. Also in this case there
is an epimorphism A — B. Hence (2) holds. O

We will use the next lemma to investigate classes of modules of finite projective
or injective dimension.

Lemma 2.12. Let R be the K-algebra of finite dimension and let U and V be two
finite dimensional left R-modules such that Endg(U) = K,Endg(V) & K[z]/(x?),
Homp(U,V) =2 K and Hompg(V,U) = 0. Then the class add(U @ V') is a Baer-
Kaplansky class. Moreover the number of indecomposable direct summands and the

dimension of the endomorphism ring are not a complete set of invariants for the
modules in add(U @ V).

Proof. The proof is similar to the proof of Lemma 2.5. More precisely, let X
be a non-zero left R-module of the form U™ @ V™ with m,n € N. Let A =
Endr(U™), B = Endgr(V"™), H = Homg(U™, V"), T = Endg(X). Then A is
isomorphic to the full matrix algebra M,,(K), B is isomorphic to the full matrix
algebra M,,(K|[x]/(2?)). H is a B-A-bimodule of dimension mn and T is isomorphic
0 . Consequently, the following facts hold:

. A
to the matrix algebra o B

(1) dimT = m? + 2n% + mn.
(2) The identity of T is the sum of m + n primitive idempotents.

(3) The category of finitely generated left T-modules is a Krull-Schmidt category
[9, page 66].

(4) The regular module 77T is the direct sum of m indecomposable non-simple
isomorphic left T-modules (of dimension m + n) and of n simple isomorphic
left T-modules (of dimension 2n).

From now on we continue as in the last part of the proof of Lemma 2.5.. O

Example 2.13. There exist finite dimensional K-algebras A and B with the fol-
lowing properties:

(1) The classes of finitely generated projective (resp. injective) left modules over
A and B are Baer-Kaplansky classes.

(2) Any finitely generated left A-module of finite projective dimension is projec-
tive.
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(3) Any finitely generated left B-module of finite injective dimension is injective.

(4) The class of finitely generated left A-modules of finite injective dimension is
not a Baer-Kaplansky class.

(5) The class of finitely generated left B-modules of finite projective dimension
is not a Baer-Kaplansky class.

Construction: Let A be the algebra of Example 2.6, given by the quiver 1 %
2 Q b with relations ba = b*> = 0. Next let B be the algebra, isomorphic

to A°P, given by the quiver a D 1 % 2 with relations a2 = ba = 0. Then

1,2, 1 , ; ' ! o are the indecomposable left B-modules, while
1 1 1
add(2 @ 1 9 ) and add( 5 @ )

are the classes of finitely generated projective and finitely generated injective left
B-modules, respectively. Hence (1) immediately follows from Example 2.6 (or

Lemma 2.5) and Lemma 2.12. Since the left A-modules 1,2, 1 9 2 have in-

finite projective dimension, we conclude that (2) holds. Dually, the left B-modules

L2, 1 9 have infinite injective dimension. Hence also (3) holds. Moreover

the projective left A-module has injective dimension one, and we clearly have

2

2

1
5 )

9 2 ). Consequently (4) holds. Finally the

End 4 (

1

Klz]/(2?) = Enda(

injective left B-module 1 has projective dimension one, and we obviously have

1

1

Endp( } ) = Klx]/(2?) =2 Endp( 1 . Hence also (5) holds.

5 )
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