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Abstract. The aim of this work is to study the discreteness of the spectrum of the

Schrödinger operator on infinite quantum graphs in a magnetic field. The problem was

solved on a set of quantum graphs of a special kind.

1. Introduction

For the operator describing a physical system, it is an ongoing problem to de-
scribe which properties the system characterise when the spectrum of the operator
is discrete. This problem has been solved in various special cases. For example,
Molchanov proposed in [12] a criterion for a potential to provide the discreteness
of the Hamiltonian spectrum in the 1-dimensional case. Necessary and sufficient
conditions for a self-adjoint operator on a line related to a general second-order
expression to have discrete spectrum are presented in the article [13]. The discrete-

ness of the spectrum of the non-magnetic Schŕ’odinger operator has been studied,
for example, in [1, 2, 11, 16]. In the case of a magnetic field, one works in the
space of complex functions, which complicates the task. Studies of the magnetic
Schrödinger operator were carried out in [3, 6, 7, 10, 14], but no rigorous criteria
have been proved for the discreteness of the spectrum of the Schrödinger operator
on quantum graphs in a magnetic field. The mathematical modeling of the physical
system in this article is based on the theory of quantum graphs. A rigorous proof
of the correctness of their use was offered in [15], and the mathematical theory of
quantum graphs was treated in [4, 9].
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2. Preliminary

In this article, we confine our attention to some specific quantum graphs only.
The class of these graphs is described below.

Definition 2.1. A quantum graph belongs to the class G if it is a connected graph
and the following conditions are satisfied:

(1) any two vertices are connected by no more than a finite set of edges,

(2) the length of the edges of the graph is bounded below by a positive constant,

(3) for any fixed vertex v and for any marked edges (the sum of the lengths of
all marked edges is equal to infinity) there is a path p satisfying the following
properties:

(i) p starts at vertex v;

(ii) p is isomorphic to the half-line;

(iii) p contains marked edges (not necessarily all), the sum of their lengths
is equal to infinity.

Unfortunately, this definition is not illustrative. Two examples of quantum
graphs belonging to the class G are: an infinite flat rectangular lattice, and an
infinite lattice built on a parallelepiped. It is also worth noting that if some quantum
graph G0 belongs to the class G, then any connected subgraph of the quantum
graph G0 belongs to the class G. We define the magnetic Schrödinger operator H
on graphs from the class G in a conventional way (see, e.g., [5, 8]).

Definition 2.2. The domain of the Schrödinger operator on a curve in R3 in an
electromagnetic field is as follows:

domH = {u ∈ C(G) ∩H2(G \ V (G));∑
e∈Ev

∂xe
u(v) = βvu(v), v ∈ V (G);u(v) = 0, v ∈ ∂G}.

The operator acts on each edge of the quantum graph as follows (in dimensionless
units):

(2.1) Hf(t) = −(
∂

∂t
− ia(t))2f(t) + q(t)f(t),

where C(G) is the space of continuous functions on G, V (G) is the set of vertices
G, H2 is the Sobolev space W 2

2 , Ev is the set of edges containing the vertex v,
∂xeu(v) is the magnetic derivative of the function for the vertex v lying on the edge

e coming out of the vertex v, βv > 0 is a real positive number,
−→
A : R3 → R3 is

the vector potential of the magnetic field, q(t) : R3 → R is the scalar potential

of the electric field, a(t) = dr
dt (t) ·

−→
A (r(t)) is an auxiliary function, r(t) is the
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natural parameterization of the curve that is the edge of the quantum graph, and
dimensionless parameters are selected as follows: e = 1, h = 2π,m = 1

2 .

Note that the variable t is exclusively a parametrization variable and does not
carry any physical meaning.

3. Result

We deal with the spectral problem

(3.1) Hf = λf.

The main result of this article is the following theorem.

Theorem 3.1. Consider a quantum graph that belongs to the class G. Assume
that the function q(t) (see 2.1), which characterizes the scalar potential of the electric
field is bounded below and has the following property

(3.2) lim
b→∞

inf
La,dist(a,v0)>b

∫
La

q(τ)dτ =∞

for any ω > 0 and a fixed vertex v0, where La belongs to the set of all disjoint paths
on the quantum graph under consideration whose length is ω, and a is the starting
point of the path La (a is the closest to v0 endpoint of La).

For any fixed λ there exist values for the boundary conditions βv such that any
solution of the spectral problem of the operator H on the quantum graph under
consideration has a finite number of roots located on this quantum graph.

Note that from the assumption of the theorem it is known that function q(t) is
bounded below, which means that there exists some constant c such that q(t) ≥ c
for any t ∈ (0,∞). Suppose that c is not equal to 0, then we make the following
change of variables: q̃(t) = q(t) − c, λ̃ = λ + c. Then, the obtained problem is
equivalent to the problem formulated in the hypothesis of the theorem and q(t) ≥ 0.
Thus, we assume in what follows that q(t) ≥ 0. We carry out the following change of
variables for each edge of the quantum graph parameterized by the segment [0; tk],

(3.3) fk(t) = yk(t)e
i
tk∫
0

ak(τ)dτ
,

where the function ak(τ) is the restriction of the function a(τ) to the edge under
consideration. Note that the roots of the function fk(t) coincide with the roots of
the function yk(t); therefore, in the proof of the theorem, we will study the roots of
the function y(t), which is the union of the functions yk(t). Let us prove the theorem
by contradiction. Fix a positive λ. Suppose that there is a complex solution to the
equation that has an infinite number of roots belonging to the interval (0,∞). Then
from the condition that the quantum graph under consideration belongs to the class
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G, it follows that there exists a path Lv0 starting at the vertex v0, isomorphic to
the half-line on which there is an infinite number of roots of the complex function
y(t). We denote them as follows: α1 < α2 < ... < αn < ... . We may assume there
is such a chain of roots or there would be a segment with an infinite number of
roots on it. This would means that there is a root condensation point, hence, this
solution is identically zero. However, we are looking only for non-trivial solutions.
Take some ω > 0, for which it is true that ω < (λ0 + 1)−1. Take b such that for
some fixed vertex v0 the following is true:

(3.4)

∫
La

q(τ)dτ > ω · (λ0 + 1),

where dist(a, v0) > b, which is possible by virtue of the condition (3.2). Let us take
n such that αn > b and m such that dist(αm, αn) > ω. Note that in the future
we can assume that αm − αn = Pω, where P is an integer. We study the original
equation for a fixed λ0:

(3.5) y′′(t) = (q(t)− λ0)y(t).

We make the following conversion:

(3.6) y′′(t)y(t) = (q(t)− λ0)y(t)y(t),

where y(t) is the adjoint function of the function y(t). We integrate the equation
(3.6) from αn to αm. We integrate by parts the left hand side of the equation:

(3.7)

αm∫
αn

y′′(t)y(t)dt =

s∑
k=1

y′k(vk)yk(vk)−
s∑

k=1

y′k+1(vk)yk+1(vk)−
αm∫
αn

|y′(t)|2dt,

where the path between the roots αn and αm contains s vertices vk and yk(t) is the
restriction of the function y(t) to the k-th edge, counting from the point αn. As for
the right side of the equation (3.6), we obtain the following:

(3.8)

αm∫
αn

(q(t)− λ0)y(t)y(t)dt =

αm∫
αn

q(t)|y(t)|2dt− λ0

αm∫
αn

|y(t)|2dt.

We carry out the following transformation:

(3.9)

αm∫
αn

q(t)|y(t)|2dt =

P∑
k=1

∫
Lak

q(t)|y(t)|2dt,

where L = ∪kLak is the path connecting the points αn and αm, and |Lak| = ω.
Using the mean value theorem, we obtain the following inequality:

(3.10)

∫
Lak

q(t)|y(t)|2dt > (λ0 + 1)|y(ξk)|2ω,
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where ξk ∈ Lak. Thus, we can obtain from (3.9), (3.10) the following inequality:

αm∫
αn

q(t)|y(t)|2dt > (λ0 + 1)ω

P∑
k=1

|y(ξk)|2

= (λ0 + 1) · (
αm∫
αn

|y(t)|2dt−
P∑
k=1

∫
Lak

(|y(t)|2 − |y(ξk)|2)dt).

After some transformations, the following inequalities can be obtained:

s∑
k=1

y′k(vk)yk(vk)−
s∑

k=1

y′k+1(vk)yk+1(vk)−
αm∫
αn

|y′(t)|2dt

> (λ0 + 1)

αm∫
αn

|y(t)|2dt− (λ0 + 1)ω

αm∫
αn

|y(t)|2dt

− (λ0 + 1)ω

αm∫
αn

|y′(t)|2dt− λ0

αm∫
αn

|y(t)|2dt

= (λ0 + 1− (λ0 + 1)ω − λ0)

αm∫
αn

|y(t)|2dt− (λ0 + 1)ω

αm∫
αn

|y′(t)|2dt

= (1− (λ0 + 1)ω)

αm∫
αn

|y(t)|2dt− (λ0 + 1)ω

αm∫
αn

|y′(t)|2dt.

Thus, the following inequality holds:
(3.11)

(1− (λ0 + 1)ω)

αm∫
αn

(|y(t)|2 + |y′(t)|2)dt <

s∑
k=1

y′k(vk)yk(vk)−
s∑

k=1

y′k+1(vk)yk+1(vk).

Let us simplify the expression on the right hand side of the inequality (3.11), re-
turning to the original variables (see (3.3)):

s∑
k=1

y′k(vk)yk(vk)−
s∑

k=1

y′k+1(vk)yk+1(vk)(3.12)

=

s∑
k=1

f ′k(vk)fk(vk)−
s∑

k=1

f ′k+1(vk)fk+1(vk)

− i ·
s∑

k=1

ak(vk)f2k (vk) + i ·
s∑

k=1

ak+1(vk)f2k+1(vk).
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The right-hand side of equation (3.6) is real, which means that after integration it
will also be real. Therefore, the left side of equation (3.6) before and after integration
is also real. Therefore, the expression (3.12) is a real function. Thus, the inequality
(3.11) in terms of the source variables will look like this:
(3.13)

(1− (λ0 + 1)ω)

αm∫
αn

(|f(t)|2 + |f ′(t)|2)dt <

s∑
k=1

f ′k(vk)fk(vk)−
s∑

k=1

f ′k+1(vk)fk+1(vk).

Note that due to (λ0 + 1)ω < 1, there exists a set βv for which the inequality (3.13)
is false. Thus, we have arrived at a contradiction, and, therefore, the theorem is
proved.

To summarize, we considered quantum graphs of a certain topological structure
(see Definition ) with the Schrödinger operator corresponding to the scalar poten-
tial of a special form (3.2). A theorem was formulated and proved for the quantum
graphs which states that for any fixed eigenvalue, there is a set of constants char-
acterizing the boundary conditions such that the eigenfunction has finitely many
zeros. This theorem is not yet the criterion for the discreteness of the spectrum of
the Schrödinger operator on a quantum graph in a magnetic field, but allows it to
be studied. The obtained result can be useful in physical applications related to the
transport properties of nanosystems.

References

[1] S.Akduman and A. Pankov, Schrödinger operators with locally integrable potentials
on infinite metric graphs, Appl. Anal., 96(12)(2017), 2149–2161.

[2] D. Barseghyan, et al., Spectral analysis of a class of Schrödinger operators exhibiting
a parameter-dependent spectral transition, J. Phys. A, 49(16)(2016), 165302, 19 pp.

[3] M. Bellassoued, Stable determination of coefficients in the dynamical Schrödinger
equation in a magnetic field, Inverse Problems, 33(5)(2017), 055009, 36 pp.

[4] G. Berkolaiko (ed.), Quantum graphs and their applications, Proceedings of an AMS-
IMS-SIAM Joint Summer Research Conference on Quantum Graphs and Their Appli-
cations, June 19-23, 2005, Snowbird, UT, Contemporary Mathematics 415, American
Mathematical Soc., 2006.

[5] G. Berkolaiko and P. Kuchment, Introduction to quantum graphs, American Mathe-
matical Society, Providence, 2013.

[6] M. Bonnefont, et al., Magnetic sparseness and Schrödinger operators on graphs, An-
nales Henri Poincare, 21(2020), 1489–1516.

[7] A. Chatterjee, I. Y. Popov and M. O. Smolkina, Persistent current in a chain of two
Holstein-Hubbard rings in the presence of Rashba spin-orbit interaction, Nanosystems:
Physics, Chemistry, Mathematics, 10(2019), 50–62.



Spectrum Discreteness for the Magnetic Schrödinger Operator 255

[8] D. A. Eremin, E. N. Grishanov, D. S. Nikiforov and I. Y. Popov, Wave dynamics on
time-depending graph with Aharonov-Bohm ring, Nanosystems: Physics, Chemistry,
Mathematics, 9(2018), 457–463.

[9] P. Exner, et al. (ed.) Analysis on graphs and its applications, Isaac Newton Institute
for Mathematical Sciences, Cambridge, UK, January 8-June 29, 2007, Proceedings of
Symposia in Pure Mathematics 77, American Mathematical Soc., 2008.

[10] E. Korotyaev and N. Saburova, Magnetic Schrödinger operators on periodic discrete
graphs, J. Funct. Anal., 272(4)(2017), 1625–1660.

[11] M. O. Kovaleva and I. Y. Popov, On Molchanov’s condition for the spectrum discrete-
ness of a quantum graph Hamiltonian with δ-coupling, Rep. Math. Phys., 76(2)(2015),
171–178.

[12] A. M. Molchanov, On conditions of spectrum discreteness for self-adjoint differential
operators of second order, Proc. Moscow Math. Soc., 2(1953), 169–199.

[13] R. Oinarov and M. Otelbaev, A criterion for a general Sturm-Liouville operator to
have a discrete spectrum, and a related imbedding theorem, Differential Equations,
24(4)(1988), 402–408.

[14] N. Raymond, Bound states of the magnetic Schrödinger operator, EMS Tracts in
Mathematics 27, European Mathematical Society, Berlin, 2017.

[15] K. Ruedenberg and C. W. Scherr, Free electron network model for conjugated systems.
I. theory, J. Chem. Phys., 21(9)(1953), 1565–1581.

[16] J. Zhao, G. Shi and J. Yan, Discreteness of spectrum for Schrödinger operators
with δ-type conditions on infinite regular trees, Proc. Roy. Soc. Edinburgh Sect. A,
147(5)(2017), 1091–1117.


