
KYUNGPOOK Math. J. 61(2021), 223-237

https://doi.org/10.5666/KMJ.2021.61.2.223

pISSN 1225-6951 eISSN 0454-8124

c© Kyungpook Mathematical Journal

Left Translations and Isomorphism Theorems for Menger
Algebras of Rank n

Thodsaporn Kumduang and Sorasak Leeratanavalee∗

Research Center in Mathematics and Applied Mathematics, Department of Mathe-
matics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
e-mail : kumduang01@gmail.com and sorasak.l@cmu.ac.th

Abstract. Let n be a fixed natural number. Menger algebras of rank n can be regarded

as a canonical generalization of arbitrary semigroups. This paper is concerned with study-

ing algebraic properties of Menger algebras of rank n by first defining a special class of full

n-place functions, the so-called a left translation, which possess necessary and sufficient

conditions for an (n + 1)-groupoid to be a Menger algebra of rank n. The isomorphism

parts begin with introducing the concept of homomorphisms, and congruences in Menger

algebras of rank n. These lead us to establish a quotient structure consisting a nonempty

set factored by such congruences together with an operation defined on its equivalence

classes. Finally, the fundamental homomorphism theorem and isomorphism theorems for

Menger algebras of rank n are given. As a consequence, our results are significant in the

study of algebraic theoretical Menger algebras of rank n. Furthermore, we extend the

usual notions of ordinary semigroups in a natural way.

1. Introduction

The study of algebraic properties of the composition of multiplace functions was
initiated by K. Menger in 1946 [7]. The essential property of composition, which
is called superassociative law, was studied in both primary and advanced ways.
Following the suggestion of K. Menger, the concept of Menger algebras of rank n
is presented. A nonempty set G with an (n + 1)-ary operation ◦ defined on G
where n ≥ 1 is called a Menger algebra of rank n and denoted by (G, ◦) if for all
x, y1, . . . , yn, z1, . . . , zn ∈ G the following superassociative law holds:

◦(◦(x, y1, . . . , yn), z1, . . . , zn) = ◦(x, ◦(y1, z1, . . . , zn), . . . , ◦(yn, z1, . . . , zn)).
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For n = 1, it is an arbitrary semigroup. By a Menger subalgebra of rank n of G,
we mean a nonempty subset A of G which is closed with respect to the restriction
of ◦ to A.

Example 1.1.([3]) Some examples of Menger algebras of rank n are provided.

(1) The set R+ of all positive real numbers with the operation ◦ : (R+)n+1 → R+,
defined by ◦(x0, . . . , xn) = x0 n

√
x1 · · ·xn, forms a Menger algebra of rank n.

(2) The set of all real numbers R with the following (n + 1)-ary operation ◦,
which is defined by ◦(x, y1 . . . , yn) = x + y1+...+yn

n for all x, y1 . . . , yn ∈ R is
a Menger algebra of rank n.

If there exist elements e1, . . . , en ∈ G, called selectors, such that

◦(x, e1, . . . , en) = x and ◦ (ei, x1 . . . , xn) = xi

for all x, x1, . . . , xn ∈ G, i = 1, . . . , n, then a Menger algebra of rank n (G, ◦) is
called unitary. It is obviously evident that the definition of selectors is an extension
of an identity element in semigroups by considering n = 1 so that there exists e1 ∈ G
and hence ◦(x, e1) = x and ◦(e1, x1) = x1. So e1 acts as a right identity and a left
identity, respectively.

The development of the theory of Menger algebras of rank n and their appli-
cations continued with the work of W. A. Dudek and V. S. Trokhimenko, which
are studied nowadays by many mathematicians in various topics. Particularly, a
Menger algebra of rank n of n-ary operation is one of the popular topic for studying
the algebraic structural properties of n-place functions in this decade. For further
results on this area, see W. A. Dudek and V. S. Trokhimenko [3, 4, 5].

In various branches of mathematics, espectially in modern algebra, the set of
functions of fixed type and composition operations on functions is actually impor-
tant. For example, the theory of transformation semigroup is the heart of contem-
porary semigroups. Generally, the set of n-place operations (full functions) defined
on a fixed set A, i.e., n-place functions defined for each element of the set An is
an extension idea of the usual functions. We now present some basic notions about
n-ary operations as follows:

Let An be the n-th Cartesian product of a nonempty set A. Any mapping from
An to A is called a full n-place functions or an n-ary operations if it is defined for
all elements of A. The set of all such mapping is denoted by T (An, A). One can
consider the Menger’s superposition on the set T (An, A), i.e., an (n+ 1)-operation
O : T (An, A)n+1 → T (An, A) defined by

O(f, g1, . . . , gn)(a1, . . . , an) = f(g1(a1, . . . , an), . . . , gn(a1, . . . , an)),

where f, g1, . . . , gn ∈ T (An, A), a1, . . . , an ∈ A. The set T (An, A) is said to be an
algebra of full functions or algebra of operations if the composition of n+1 functions
from this set is also in this set, i.e., closed with respect to Menger’s superposition.
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We can remark here that the Menger’s superposition can be reduced to the usual
composition of functions if n = 1.

A Menger algebra of all full n-ary functions or Menger algebra of all n-ary
operations is a pair of the set T (An, A) of all full n-place functions defined on A
and the Menger composition of full n-place functions satisfying the superassociative
law. Each subalgebra of this algebra will be called a Menger algebra of full n-place
functions or Menger algebra of n-ary operations.

Let X a nonempty set. The transformations on X together with the usual com-
position forms a semigroup, called a transformations semigroup, and denoted by
T (X). Another important class of transformations is that of the so-called transla-
tions, which introduced by A. H. Clifford [1] in 1950 and then studied by a number
of other mathematicians. Some essential concepts related to translations and their
properties in semigroups will be recalled. For convenient, we may write a semigroup
S and xy instead of (S, ·) and the product x · y, respectively. A transformation
λ : S → S of a semigroup S is called a left translation of S if λ(xy) = λ(x)y for all
x, y in S. A transformation ρ of S is called a right translation of S if ρ(xy) = xρ(y)
for all x, y in S.

For each element a of a groupoid S, we associate a mapping λa : S → S defined
by λa(x) = ax for all x ∈ S. We call λa the inner left translation of S corresponding
to the element a of S. Similarly, the mapping ρa : S → S defined by ρa(x) = xa for
all x ∈ S. We call ρa the inner right translation of S corresponding to the element a
of S. If a semigroup S has a left identity element e then every left translation of S is
inner, for λ(x) = λ(ex) = λ(e)x = ax where a = λ(e). For the right, this situation is
also valid. Denote the set of all left translations of a semigroup S by Λ(S), and the
set of all inner left translations by Λ0(S). Similarly, we will use for the right trans-
lations the notations P (S) and P0(S), respectively. Since translations are element
of the transformation semigroup T (S), there is defined for them a multiplication. It
is immediately evident that Λ(S),Λ0(S), P (S), P0(S) are semigroups with respect
to this operation of usual composition of transformations. As a consequcence, A.
H. Clifford proved the characterization of semigroups via their translations that a
groupoid S is a semigroup if and only if any inner left(right) translation of S is a
left(right) translation. This means that the concept of translations can be applied
to characterize a semigroup. Moreover, it also plays an essential role in the ideal
extension of semigroups. For further reading on translations of semigroup, see [2].

The main results of the paper concern the structure of Menger algebras of rank
n with respect to one (n + 1)-superassociative operation. In this work, in Section
3, we generalize the notion of translations in Semigroups to Menger algebras of
rank n and study their structure by using the full n-place functions studied by
many algebraists in [4, 5] for classial algebraic algebras. We also extend some
well-known results related to an inner left translation from arbitrary semigroups
to its extension. We continue the study of Menger algebras of rank n in Section
4 concerning a binary relation, especially a congruence relation. This posses a
corresponding quotient structure from the original one. The relationship between
all structures in this section in sense of the homomorphic image is investigated.
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In Section 5, we complete the paper with a summary discussion on the interesting
problems and a suggestion for the future work in this research direction.

2. Preliminary Results in Semigroups

For an extensive introduction to the theory and history of semigroups, we refer
the reader to A. H. Clifford [2] and J. M. Howie [6]. We will begin by recalling some
definitions and interesting results in semigroups.

A binary relation ρ on S is a subset of S × S. Let ρ be an equivalence relation
on a nonempty set S.

Definition 2.1.([6]) Let S be a semigroup. A binary relation ρ on the set S is
called left compatible (with the operation on S) if

(∀a, b, x ∈ S) (a, b) ∈ ρ⇒ (xa, xb) ∈ ρ,

and right compatible if

(∀a, b, x ∈ S) (a, b) ∈ ρ⇒ (ax, bx) ∈ ρ.

It is called compatible if satisfied left and right compatible, i.e.,

(∀a, b, c, d ∈ S) (a, b) ∈ ρ and (c, d) ∈ ρ⇒ (ac, bd) ∈ ρ.

A left (right) compatible equivalence relation is called left (right) congruence. A
compatible equivalence relation is called congruence.

For every x ∈ S, the set xρ or x or [x]ρ induced by the partition determined
by the equivalence relation is called a ρ-class, or an equivalence class. The set of
ρ-classes is called the quotient set of S by ρ, and is denoted by S/ρ.

If ρ is a congruence on a semigroup S then a binary operation ? on the quotient
set S/ρ can be defined in a canonical way as follows;

(2.1) (aρ) ? (bρ) = (ab)ρ.

It is well known that the quotient set S/ρ together with a binary operation ? defined
by (2.1) forms a semigroup, and called a quotient semigroup.

Let ρ be congruence on a semigroup S. Then a mapping ρ] : S → S/ρ, defined
by aρ] = aρ is a surjective homomorphism from S to S/ρ and called a natural
homomorphism from S onto S/ρ. If S and T are semigroups and φ : S → T is a
homomorphism, then the kernel of φ written by kerφ defined by kerφ = {(a, b) ∈
S × S | aφ = bφ}. It is clearly evident that kerφ is congruence on S.

An important connection between homomorphism and quotient semigroup is
established as follows: Let S and T be semigroups and φ : S → T is a homomor-
phism, and let ρ be congruence on S with ρ ⊆ kerφ. Then, there exists a unique
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homomorphism ϕ : S/ρ→ T such that the following diagram

S T

S/ρ

φ

ρ] ϕ

is commutative. Many authors prefer to call the above statement the fundamental
theorem of semigroup homomorphism. Furthermore, if φ : S → T is a homomor-
phism, then kerφ is congruence, and there exists a mapping ψ : S/kerφ → imφ
with ψ([x]kerφ) = φ(x) is an isomorphism for all x ∈ S, and hence S/ kerφ ∼= imφ.

One structural application of the fundamental homomorphism theorem is to the
situation where ρ and σ are two congruences on S with ρ ⊆ σ. A binary relation
σ/ρ on S/ρ is defined by

(aρ, bρ) ∈ σ/ρ⇔ (a, b) ∈ σ.

Then σ/ρ is congruence on S/ρ and so (S/ρ)/(σ/ρ) ∼= S/σ.
After we completed this section concerning the basic definitions and background

results in semigroup theory, the main results of this paper will be started in the
next section.

3. The Left Translation of Menger Algebras of Rank n

In order to study the characterization of Menger algebras of rank n through
translations, we first introduce the notion of translations in Menger algebras of
rank n and study their structural properties.

Definition 3.1. Let (G, ◦) be a Menger algebra of rank n. A mapping λ : Gn → G
is called the left translation of Gn if it is satisfied the following equation

(3.1) λ(◦(y1, z1, . . . , zn), . . . , ◦(yn, z1, . . . , zn)) = ◦(λ(y1, . . . , yn), z1, . . . , zn).

According to Definition 3.1, this definition can be regarded as a natural gener-
alization of translations in ordinary semigroups by putting n = 1, then λ acts as a
left translation.

The characterization theorem of Menger algebras of rank n states that an (n+1)-
ary groupoid is a Menger algebra of rank n if and only if every inner left translation
on G is a left translation of G. Before we prove this fact, we first give a several
results concerning the algebraic properties of a left translation, and introduce a
definition of an inner left translation later.

Lemma 3.2. Let (G, ◦) be a Menger algebra of rank n and

Λ(G) = {λ : Gn → G | λ is a left translation of G}.
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Then Λ(G) forms a Menger algebra of rank n with respect to the Menger’s super-
position.

Proof. It is cleary verified that Λ(G) 6= ∅. Indeed, let a full n-place function
λ : Gn → G be defined by λ(x1, . . . , xn) = x1. Then λ which defined above is a left
translation of G. Hence λ ∈ Λ(G) and thus Λ(G) 6= ∅. Now let λ, λ1, . . . , λn ∈ Λ(G).
Then

O(λ, λ1, . . . , λn)(◦(y1, z1, . . . , zn), . . . , ◦(yn, z1, . . . , zn))

= λ(λ1(◦(y1, z1, . . . , zn), . . . , ◦(yn, z1, . . . , zn)), . . . ,

λn(◦(y1, z1, . . . , zn), . . . , ◦(yn, z1, . . . , zn)))

= λ(◦(λ1(y1, . . . , yn), z1, . . . , zn), . . . , ◦(λn(y1, . . . , yn), z1, . . . , zn)))

= ◦(λ(λ1(y1, . . . , yn), . . . , λn(y1, . . . , yn)), z1, . . . , zn)

= ◦(O(λ, λ1, . . . , λn)(x1, . . . , xn), z1, . . . , zn).

This shows that O(λ, λ1, . . . , λn) ∈ Λ(G). Hence we conclude that (Λ(G),O) is a
Menger algebra of rank n. 2

Corollary 3.3. The structure (Λ(G),O) is a Menger subalgebra of rank n of a
Menger algebra of full n-place functions (T (Gn, G),O).

Proof. The proof of this corollary follows immediately from Lemma 3.2. 2

Subsequently, we present the definition of an inner left translation using the
concept of full n-place functions.

Definition 3.4. For each element a of a Menger algebra of rank n (G, ◦), a mapping
λa : Gn → G of Gn defined by

(3.2) λa(x1, . . . , xn) = ◦(a, x1, . . . , xn)

for all x1, . . . , xn ∈ G, where ◦ is an (n + 1) operation defined on G, is called an
inner left translation correspond to the element a of G.

We can remark here that if n = 1 the inner left translation λa defined by (3.2)
is reduced to the usual inner left translation in an ordinary semigroup.

Let Λ0(G) be the set of all inner left translations in G. Clearly, it is a subset of
T (Gn, G). Applying the Menger’s composition of full n-place functions, it follows
that Λ0(G) forms a Menger algebra of rank n.

The following result gives a necessary condition for an inner left translation.

Proposition 3.5. Let (G, ◦) be a Menger algebra of rank n. If G contains
selectors, then every left translation of G is an inner left translation.

Proof. Let x1, . . . , xn be arbitrary elements of G. Assume that λ : Gn → G is a left
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translation. By the definition of selectors, then we have

λ(x1, . . . , xn) = λ(◦(e1, x1, . . . , xn), . . . , ◦(en, x1, . . . , xn))

= ◦(λ(e1, . . . , en), x1, . . . , xn)

= ◦(a, x1, . . . , xn) where a = λ(e1, . . . , en)

= λa(x1, . . . , xn).

Hence λ is a inner left translation of G. 2

Below we give an important result that shows the characterization of Menger
algebras of rank n in terms of translations.

Theorem 3.6. An (n + 1)-groupoid (G, ◦) is a Menger algebra of rank n if and
only if every inner left translation on G is a left translation of G.

Proof. For each element a of G induces a full n-place function λa : Gn → G which is
an inner left translation. The fact that this inner left translation is a left translation
because

λa(◦(y1, z1, . . . , zn), . . . , ◦(yn, z1, . . . , zn))

= ◦(a, ◦(y1, z1, . . . , zn), . . . , ◦(yn, z1, . . . , zn))

= ◦(◦(a, y1, . . . , yn), z1, . . . , zn)

= ◦(λa(y1, . . . , yn), z1, . . . , zn).

Hence λa is a left translation. For the converse, suppose that λa is a left translation
for all a ∈ G. To prove that an (n + 1)-operation ◦ on G is superassociative, let
a, y1, . . . , yn, z1, . . . , zn ∈ G. Then

◦ (◦(a, y1, . . . , yn), z1, . . . , zn)

= ◦(λa(y1, . . . , yn), z1, . . . , zn)

= λa(◦(y1, z1, . . . , zn), . . . , ◦(yn, z1, . . . , zn))

= ◦(a, ◦(y1, z1, . . . , zn), . . . , ◦(yn, z1, . . . , zn)). 2

4. Quotient Menger Algebras of Rank n and Their Corresponding Iso-
morphism Theorems

In this section the notion of a congruence relation on Menger algebras of rank n
is introduced and their properties are dealt with in detail. After some preliminaries
defining, we form a quotient Menger algebra of rank n in natural ways. We will
supplement these results by establishing further properties of their corresponding
homomorphism.

Before we begin the results, we will use the following notation: for nonnegative
integers i, j, the sequence xi, . . . , xj is well defined if i < j. Otherwise, if i > j,
xi, . . . , xj is the empty symbol.
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Definition 4.1. Let (G, ◦) be a Menger algebra of rank n and ρ be an equivalence
relation on G. Then ρ is called i-congruence on G, if for each i = 1, . . . , n+ 1 and
(a, b) ∈ ρ implies that the following assertion holds:

(4.1) (◦(x1, . . . , xi−1, a, xi+1, . . . , xn+1), ◦(x1, . . . , xi−1, b, xi+1, . . . , xn+1)) ∈ ρ

for all a, b, x1, . . . , xi−1, xi+1, . . . , xn+1 ∈ G.

Remark 4.2. It is commonly seen that Definition 4.1 is a natural generalization
of congruence in an ordinary semigroup by considering n = 1 and if i = 1, then
(◦(a, x2), ◦(b, x2)) ∈ ρ. So ρ acts as right congruence. Similary with i = 2, we have
(◦(x1, a), ◦(x1, b)) ∈ ρ. So ρ acts as left congruence.

Definition 4.3. Let (G, ◦) be a Menger algebra of rank n and ρ be an equivalence
relation on G. Then ρ is called congruence on G if it is i-congruence on G for all
i = 1, . . . , n+ 1.

The characterization of congruence on Menger algebras of rank n will be pro-
vided in the next theorem, see [3, Proposition 2.1.11].

Theorem 4.4.([3]) Let (G, ◦) be a Menger algebra of rank n and ρ be an equivalence
relation on G. Then ρ is congruence on G if and only if (a1, b1) ∈ ρ, (a2, b2) ∈
ρ, . . . , (an+1, bn+1) ∈ ρ implies that (◦(a1, . . . , an+1), ◦(b1, . . . , bn+1)) ∈ ρ.

Note that Theorem 4.4 can be considered as a generalization of the same sit-
uation in arbitrary semigroups. The following theorem can be easily proved by
applying Theorem 4.4.

Theorem 4.5. Let ρ be congruence on a Menger algebra of rank n (G, ◦). Then
so is ρ ◦ ρ.

We now construct a quotient set G/ρ for some congruence ρ on a Menger algebra
of rank n (G, ◦) as follows:

G/ρ = {[a]ρ | a ∈ G}

where
[a]ρ = {b ∈ G | (a, b) ∈ ρ}.

In order to form the algebraic structure consisting the set of all equivalence class
and its operation, we first define the generally product of equivalence classes in the
following definition.

Definition 4.6. On the quotient set G/ρ, an (n+ 1)-ary operation ⊗ define by

⊗([a1]ρ, [a1]ρ, . . . , [an+1]ρ) = [◦(a1, a1, . . . , an+1)]ρ.

At first, we need to ensure that this is a well-defined operation. Suppose first
that [a1]ρ = [b1]ρ, . . . , [an+1]ρ = [bn+1]ρ. This means that (a1, b1) ∈ ρ, (a2, b2) ∈



Left Translations and Isomorphism Theorems for Menger Algebras of Rank n 231

ρ, . . . , (an+1, bn+1) ∈ ρ. Since ρ is congruence, and then by Theorem implies that
(◦(a1, . . . , an+1), ◦(b1, . . . , bn+1)) ∈ ρ and so [◦(a1, . . . , an+1)]ρ = [◦(b1, . . . , bn+1)]ρ.
This follows immediately that ⊗([a1]ρ, . . . , [an+1]ρ) = ⊗([b1]ρ, . . . , [bn+1]ρ). Hence
an (n+ 1)-operation ⊗ is well-defined.

The fact that the operation ⊗ satisfies superassociative law follows from the
superassociativity of the usual operation ◦ defined on a Menger algebra of rank n
(G, ◦). Then we have the following theorem.

Theorem 4.7. Let ρ be congruence on a Menger algebra of rank n (G, ◦). The
quotient set G/ρ together with one (n+1)-ary operation ⊗ defined in Definition 4.6
forms a Menger algebra of rank n.

If ρ is a congruence relation on a Menger algebra of rank n G, then the Menger
algebra of rank n G/ρ, in Theorem 4.7 is called a quotient Menger algebra of rank
n of G by ρ.

To construct another structures, the concept of a homomorphism in Menger
algebras of rank n is firstly defined.

Definition 4.8. If (G, ◦) and (K, ∗) are Menger algebras of rank n, then a map
α : G→ K is said to be a homomorphism of Menger algebras of rank n if

α(◦(x1, . . . , xn+1)) = ∗(α(x1), . . . , α(xn+1)),

for all x1, . . . , xn+1 ∈ G. A homomorphism α : G→ K is called a monomorphism,
an epimorphism, and an isomorphism if it is injective, surjective, and both injective
and surjective, respectively. If α is isomorphism from G to K, we say G and K are
isomorphic and we write G ∼= K. A homomorphism of a Menger algebra of rank n
into itself is called an endomorphism, while an isomorphism upon itself is called an
automorphism.

Proposition 4.9. Let G1, G2 and G3 be any Menger algebras of rank n and the
maps α1 : G1 → G2, α2 : G2 → G3 be two homomorphisms. Then α2 ◦ α1 is a
homomorphism from G1 to G3.

Proof. The proof is straightforward. 2

Next, we will present the connection between congruence relations and homo-
morphisms on Menger algebras of rank n.

Theorem 4.10. Let (G, ◦) and (K, ∗) be two Menger algebras of rank n, α : G→
K be a homomorphism and ρ be a congruence relation on G. Then the relation

α(ρ) = {(α(x), α(y)) ∈ K ×K | (x, y) ∈ ρ}

is a congruence relation on K.

Proof. Obviously, α(ρ) is an equivalence relation onK. For every j = 1, . . . , n+1, let
xj , yj ∈ G be such that (α(xj), α(yj)) ∈ α(ρ). Then (xj , yj) ∈ ρ for all j = 1, . . . , n+
1. Since ρ is congruence, by Theorem 4.4, (◦(x1, . . . , xn+1), ◦(y1, . . . , yn+1)) ∈ ρ.
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By defining α(ρ), we obtain that (α(◦(x1, . . . , xn+1)), α(◦(y1, . . . , yn+1))) ∈ α(ρ).
Since α is a homomorphism, (∗(α(x1), . . . , α(xn+1)), ∗(α(y1), . . . , α(yn+1))) ∈ α(ρ).
This shows that α(ρ) is a congruence on K. 2

We give some common relationships between homomorphism and Menger sub-
algebras of rank n.

Theorem 4.11. Let (G, ◦) and (K, ∗) be Menger algebras of rank n. Assume that
α : G→ K is a homomorphism. Then, for any Menger subalgebra of rank n G′ of
G, the image α(G′) = {α(a) | a ∈ G′} of G′ under α is a Menger subalgebra of rank
n of K. Similarly, for any Menger subalgebra of rank n K ′ of K, the pre image
α−1(K ′) = {a ∈ G | α(a) ∈ K ′} of K ′ under α is a Menger subalgebra of rank n of
G, if nonempty.

Proof. The proof is straightforward. 2

Let (G, ◦) and (K, ∗) be Menger algebras of rank n and φ : G → K be a
homomorphism. Define the relation

kerφ = φ ◦ φ−1 = {(a, b) ∈ G×G | φ(a) = φ(b)}

which is called the kernel of φ.

Proposition 4.12. The relation kerφ of a homomorphism from G to K is a
congruence relation on G.

Proof. Clearly, kerφ is equivalence. Suppose now that (aj , bj) ∈ kerφ for every
j = 1, . . . , n+ 1. Then φ(aj) = φ(bj) for all j = 1, . . . , n+ 1. So

φ(◦(a1, . . . , an+1)) = ∗(φ(a1), . . . , φ(an+1))

= ∗(φ(b1), . . . , φ(bn+1))

= φ(◦(b1, . . . , bn+1)).

Thus (◦(a1, . . . , an+1), ◦(b1, . . . , bn+1)) ∈ kerφ, and hence kerφ is a congruence on
G. 2

Lemma 4.13. Let ρ be a congruence on a Menger algebra of rank n (G, ◦). Then
a mapping ρ] : G→ G/ρ defined by ρ](a) = [a]ρ is a surjective homomorphism from
G to G/ρ.

Proof. It is obviuos that ρ] is surjective. Next, suppose that x1, . . . , xn+1 ∈ G.
Then we have

ρ](◦(x1, . . . , xn+1)) = [◦(x1, . . . , xn+1)]ρ

= ⊗([x1]ρ, . . . , [xn+1]ρ)

= ⊗(ρ](x1), . . . , ρ](xn+1)).

This shows that ρ] is a surjective homomorphism from G to G/ρ. 2
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The mapping ρ] which is defined in Lemma 4.13 is called the natural homo-
morphism. We now want to examine the kernel of ρ] and so (x, y) ∈ ρ] ◦ (ρ])−1 =
kerρ] ⇔ ρ](x) = ρ](y) ⇔ [x]ρ = [y]ρ ⇔ (x, y) ∈ ρ. Therefore ρ = kerρ] and thus
every congruence is the kernel of a homomorphism.

The foregoing shows that every quotient Menger algebra of rank n of a Menger
algebra of rank n G is a homomorhic image of G. The following theorem is the
generalization of the fundamental semigroup homomorphism theorem and shows
conversely that every homomorphic image ofG is isomorphic with a quotient Menger
algebra of rank n of G.

Theorem 4.14.(Fundamental Homomorphism Theorem) Let φ be a homomor-
phism of a Menger algebra of rank n (G, ◦) into a Menger algebra of rank n (K, ∗)
and ρ ⊆ kerφ. Then there exists a unigue homomorphism β of G/ρ into K such
that the following diagram

G K

G/ρ

φ

ρ]
β

is commutatative, i.e., β ◦ ρ] = φ where ρ] is a natural homomorphism.

Proof. For each element [a]ρ of G/ρ, define β : G/ρ → K by β([a]ρ) = φ(a) where
a ∈ G. To see that β is well-defined, we note that if [a]ρ, [b]ρ ∈ G/ρ and [a]ρ = [b]ρ,
then (a, b) ∈ ρ ⊆ kerφ. Thus φ(a) = φ(b) and that β([a]ρ) = β([b]ρ). It is clear that
β maps G/ρ onto K. To show that β is homomorphism, let [a1]ρ, . . . , [an+1]ρ ∈ G/ρ.
Then

β(⊗([a1]ρ, . . . , [an+1]ρ)) = β([◦(a1, . . . , an+1)]ρ)

= φ(◦(a1, . . . , an+1))

= ∗(φ(a1), . . . , φ(an+1))

= ∗(β([a1]ρ), . . . , β([an+1]ρ)).

In order to prove the diagram commutes, let a ∈ G. Then (β ◦ ρ])(a) = β([a]ρ) =
φ(a). Hence β ◦ ρ] = φ. Finally, assume that a mapping γ : G/ρ → K is a
homomorphism such that γ ◦ ρ] = φ. If [a]ρ ∈ G/ρ, then γ([a]ρ) = γ(ρ](a)) =
(γ ◦ ρ])(a) = φ(a) = (β ◦ ρ]) = β(ρ](a)) = β([a]ρ). This proved the uniqueness of β.
2

Theorem 4.14 is very useful for proving that the first isomorphism theorem of
Menger algebras of rank n exists. By imφ we denoted the image of a mapping φ.

Corollary 4.15.(First Isomorphism Theorem) Let (G, ◦) and (K, ∗) be Menger
algebras of rank n and φ : G → K is a homomorphism. Then there exists an
isomorphism, such that S/ kerφ ∼= imφ.

Proof. From Theorem 4.14, put ρ = kerφ. Then there exists β : G/ρ→ imβ. It is
evidently clear that imβ = imφ. Indeed, let t ∈ imβ, then there exists [a]ρ ∈ G/ρ
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such that β([a]ρ) = t. From β ◦ ρ] = φ implies that φ(a) = t and so t ∈ imφ. The
converse is also valid. If φ(a) = φ(b), then (a, b) ∈ kerφ. It follows that [a]ρ = [b]ρ.
Hence β : G/ρ→ imβ = imφ is an isomorphism. 2

We can say that Corollary 4.15 is the extension of the first isomorphism theorem
of an arbitrary semigroup, i.e., in case n = 1.

Theorem 4.16.(Induced Homomorphism Theorem) Let φ1 and φ2 be homomor-
phisms from a Menger algebra of rank n (G, ◦) to Menger algebras of rank n (K1, ∗1)
and (K2, ∗2), respectively, such that φ1 is surjective and kerφ1 ⊆ kerφ2. Then there
exists a unique homomorphism θ of K1 and K2 such that the following diagram com-
mutes

G K2

K1

φ2

φ1
θ

i.e., θ ◦ φ1 = φ2.

Proof. Let k be an arbitrary element in K1. Since φ1 is surjective, there exists
ak ∈ G such that φ1(ak) = k. Define θ : K1 → K2 by θ(k) = φ2(ak). This is
well-defined, if x, y ∈ K1 and x = y. Then φ1(ax) = φ1(ay) and thus (ax, ay) ∈
kerφ1 ⊆ kerφ2. It implies that φ2(ax) = φ2(ay) and so θ(x) = θ(y). It is obvious
that θ ◦ φ1 = φ2 since (θ ◦ φ1)(a) = θ(φ1(a)) = θ(a1) = φ2(a). Next, let kj ∈ K1 for
every j = 1, . . . , n+ 1. Then we have

θ(∗1(k1, . . . , kn+1)) = θ(∗1(φ1(ak1), . . . , φ1(akn+1
)))

= θ(φ1(◦(ak1 , , . . . , akn+1
)))

= φ2(◦(ak1 , , . . . , akn+1
))

= ∗2(φ2(ak1), . . . , φ2(akn+1
))

= ∗2(θ(φ1(ak1)), . . . , θ(φ1(akn+1
)))

= ∗2(θ(k1), . . . , θ(kn+1)).

Finally, suppose that η : K1 → K2 satisfies η ◦ φ1 = φ2. Then η(k) = η(φ1(ak)) =
(η ◦ φ1)(ak) = φ2(ak) = (θ ◦ φ1)(ak) = θ(φ1(ak)) = θ(k) for all k ∈ K1. 2

One direct application of the fundamental homomorphism theorem is to the
situation where ρ1 and ρ2 are congruences on G with ρ1 ⊆ ρ2. Then there exists a
homomorphism from G/ρ1 to G/ρ2 such that the diagram

G G/ρ2

G/ρ1

ρ]2

ρ]1
θ
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commutes. This homomorphism is defined by the following: For any arbitrary
element [a]ρ1 in G/ρ1, then a mapping θ : G/ρ1 → G/ρ2 can be defined by

(4.2) θ([a]ρ1) = [a]ρ2

where a ∈ G.
Moreover, the kernel of θ on G/ρ1 is given by

(4.3) kerθ = {([a]ρ1 , [b]ρ1) ∈ G/ρ1 ×G/ρ1 | (a, b) ∈ ρ2}.

For convenient, it is suitable to write kerθ as ρ2/ρ1. We will give a remark later
that these two sets are coincide.

Lemma 4.17. The relation ρ2/ρ1 defined in (4.3) is congruence on G/ρ1.

Proof. It is obviously clear that ρ2/ρ1 is equivalence. Suppose that ([aj ]ρ1 , [bj ]ρ1)
for all j = 1, . . . , n + 1. Then we have (aj , bj) ∈ ρ2 for all j = 1, . . . , n + 1. Since
ρ2 is a congruence relation, by Theorem 4.4, (◦(a1, . . . , an+1), ◦(b1, . . . , bn+1)) ∈ ρ2.
It follows directly that ([◦(a1, . . . , an+1)]ρ1 , [◦(b1, . . . , bn+1)]ρ1) ∈ ρ2/ρ1 and thus by
defining the operation ⊗ on G/ρ1 we conclude that ρ2/ρ1 is congruence. 2

On a quotient set of G/ρ1, we can construct a new quotient set by using a
congruence ρ2/ρ1 from Lemma 4.17, i.e., a quotient set of the form (G/ρ1)/(ρ2/ρ1).
Then a natural homomorphism (ρ2/ρ1)] from G/ρ1 to (G/ρ1)/(ρ2/ρ1) exists cer-
tainly.

Finally, The connection between the structure (G/ρ1)/(ρ2/ρ1) and G/ρ2 will be
provided. This first way to study this connection derived from directly application
of the first isomorphism theorem. In fact, a mapping θ : G/ρ1 → G/ρ2 is defined
by an equation (4.2), is a homomorphism. The fact that the kernel of θ and ρ2/ρ1
are the same thing is a true result, follows immediately from the above defining. In
fact, let a, b be two arbitrary elements of G. Then

([a]ρ1 , [b]ρ1) ∈ ρ2/ρ1 ⇔ (a, b) ∈ ρ2
⇔ [a]ρ2 = [b]ρ2

⇔ θ([a]ρ1) = θ([b]ρ1)

⇔ ([a]ρ1 , [b]ρ1) ∈ kerθ.

We can also use Corollary 4.15 to obtain significant results, (G/ρ1)/(ρ2/ρ1) and
G/ρ2 are isomorphic. Furthermore, the following diagram is commutative.

G G/ρ2

G/ρ1 (G/ρ1)/(ρ2/ρ1)

ρ]2

ρ]1
θ

(ρ2/ρ1)
]

α

The final theorem shows significant different processes to prove the relationship
between the quotient structure (G/ρ1)/(ρ2/ρ1) and the original quotient G/ρ2.
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Theorem 4.18.(Second Isomorphism Theorem) Let ρ1 and ρ2 be two congruences
on a Menger algebra of rank n (G, ◦) such that ρ1 ⊆ ρ2. Then

(G/ρ1)/(ρ2/ρ1) ∼= G/ρ2.

Proof. Firstly, by Lemma 4.17, ρ2/ρ1 is congruence on G/ρ1. Define a mappping

α : (G/ρ1)/(ρ2/ρ1)→ G/ρ2 by α([[a]ρ1 ]ρ2/ρ1) = [a]ρ2 where a ∈ G. Then α is both
well-defined and injection,

[[a]ρ1 ]ρ2/ρ1 = [[b]ρ1 ]ρ2/ρ1 ⇔ ([a]ρ1 , [b]ρ1) ∈ ρ2/ρ1
⇔ (a, b) ∈ ρ2
⇔ [a]ρ2 = [b]ρ2

⇔ α([[a]ρ1 ]ρ2/ρ1) = α([[b]ρ1 ]ρ2/ρ1).

Obviously, α is surjective. It is actually a homomorphism, since, for all a1, . . . , an+1 ∈
G,

α(⊗([[a1]ρ1 ]ρ2/ρ1 , . . . , [[an+1]ρ1 ]ρ2/ρ1)) = α([⊗([a1]ρ1 , . . . , [an+1]ρ1)]ρ2/ρ1)

= α([[◦(a1, . . . , an+1)]ρ1 ]ρ2/ρ1)

= [◦(a1, . . . , an+1)]ρ2

= ⊗([a1]ρ2 , . . . , [an+1]ρ2)

= ⊗(α([[a1]ρ1 ]ρ2/ρ1), . . . , α([[an+1]ρ1 ]ρ2/ρ1)).

We conclude that a mapping α is an isomorphism from (G/ρ1)/(ρ2/ρ1) to G/ρ2.
This completed the proof. 2

As an immediate consequence of Lemma 4.17 and Theorem 4.18, we have the
following generalization:

Corollary 4.19 Let G be a Menger algebra of rank n and let ρ1, ρ2, . . . , ρm+1 be
congruences on G such that ρ1 ⊆ ρ2 ⊆ . . . ⊆ ρm+1. Then for each i = 1, . . . ,m, the
relation

ρi+1/ρi = {([a]ρi , [b]ρi) ∈ G/ρi ×G/ρi | (a, b) ∈ ρi+1}

is a congruence relation on G/ρi and

(G/ρi)/(ρi+1/ρi) ∼= G/ρi+1.

In this situation, if we set a fixed natural number m = 1, then Corollary 4.19 and
Theorem 4.18 are the same thing. Furthermore, Corollary 4.19 can be considered
as a canonical generalization of the second isomorphism theorem for semigroups if
n = m = 1.
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5. Conclusion

Menger algebras of rank n are the core of the study in this paper. Every Menger
algebra can be reduced to arbitrary semigroup in a natural way. In order to investi-
gate the characterization of Menger algebras of rank n in sense of their translations,
it is necessary to understood the concept of full n-place functions, a left translation,
an inner left translation. So, in Section 3, the most significant knowledges and some
interesting results concerning such tools in Menger algebras of rank n are presented.
In the fourth section, we first explained what is meant by a congruence relation on
Menger algebras of rank n and then discussed some of their properties. We also
made an attention to form the quotient structure and define their multiplication
in analog with those of ordinary semigroups and investigated several properties of
such algebraic structure. The notion of isomorphisms is one of the most interesting
concepts in the study of classical algebras that describe the relationship between
quotients, homomorphisms, and subalgebras. Also, we constructed the isomorphism
theorem for Menger algebras of rank n. It turns out that our main results are also
noticeable extensions of semigroups if we set an arbitrary fixed natural number n
is 1. Finally, the following problems are of interest to do in the near future:

(1) Define a right translation and an inner right translation for Menger algebras
of rank n. Give a characterization of Menger algebras of rank n via these
concepts.

(2) Construct a weakly reductive Menger algebras of rank n via the translations.

(3) Study the theory of (ideal) extensions of Menger algebras of rank n through
translation as we already defined in this work.
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