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Abstract. In this paper, we investigate harmonic univalent functions convex in the di-

rection θ, for θ ∈ [0, π). We find bounds for |fz(z)|, |fz(z)| and |f(z)|, as well as coefficient

bounds on the series expansion of functions convex in a given direction.

1. Introduction

A continuous function f = u + iv is a complex valued harmonic function in a
complex domain Ω ⊂ C if both u and v are real harmonic in Ω. In any simply
connected domain Ω ⊂ C, we can write f = h + g, where h and g are analytic in
Ω. We call h the analytic part and g the co-analytic part of f . A necessary and
sufficient condition for f to be locally univalent and sense-preserving in Ω is that
|h′

(z)| > |g′
(z)| in Ω. (See [2]).

Denote by SH the class of functions f = h+ g that are harmonic univalent and
sense-preserving in D = {z ∈ C : |z| < 1} for which f(0) = fz(0)− 1 = 0. Then for
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f = h+ g ∈ SH, we may express the analytic functions h and g as

h(z) = z +

∞∑
k=2

akz
k, g(z) =

∞∑
k=1

bkz
k, |b1| < 1.(1.1)

If a univalent harmonic mapping f = h+ g satisfies the condition∣∣∣∣ g′(z)h′(z)

∣∣∣∣ ≤ k ≤ 1 (z ∈ D),

then f is called a harmonic K-quasiconformal mapping in D where K = 1+k
1−k .

Recently, several authors derived conditions for univalent harmonic mappings to
be K-quasiconformal, see (for example) the works [1, 4, 5, 6, 8, 9, 10, 12] and the
references therein.

A domain Ω is said to be convex in the direction θ for θ ∈ [0, π), if for all a ∈ C,
the set Ω ∩ {a+ teiθ : t ∈ R} is either connected or empty. In particular, a domain
is convex in the direction of the real (imaginary) axis if every line parallel to the
real (imaginary) axis has either an empty intersection or a connected intersection
with the domain. A function is said to be convex in the direction θ if it maps D
univalently onto a domain convex in the direction θ.

2. Preliminaries

The shear construction introduced by Clunie and Sheil-Small in [2] provides a
way of producing univalent harmonic functions in the unit disk which are convex in
one direction. They proved the following interesting theorem.

Theorem 2.1.([2]) A sense-preserving harmonic function f = h + g in D is a
univalent mapping of D onto a domain convex in the direction of the real axis if
and only if h − g is an analytic univalent mapping of D onto a domain convex in
the direction of the real axis.

Moreover, they proved by the following theorem that Theorem 2.1 would be
generalized to a convex domain in the direction θ.

Theorem 2.2.([2]) A harmonic function f = h + g, locally univalent in D, is a
univalent mapping of onto a domain convex in the direction θ if and only if h−e2iθg
is an analytic univalent mapping in D onto a domain convex in the direction θ.

Hengartner and Schober [3] studied analytic functions ψ that are convex in the
direction of the imaginary axis. They used a normalization which basically depends
on the right and left extremes of ψ(D) being the images of 1 and −1. Actually,
this method deals with existing the sequences {z′n} converging to z = 1 and {z′′n}
converging to z = −1 such that

(2.1)

lim
n→∞

Re {ψ(z′n)} = sup
|z|<1

Re {ψ(z)} ,

lim
n→∞

Re {ψ(z′′n)} = inf
|z|<1

Re {ψ(z)} .
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Let CIA be the class of domains Ω which are convex in direction the imaginary
axis and admit a mapping ψ such that ψ(D) = Ω and ψ satisfies the normalization
(2.1), then we have the following result:

Theorem 2.3.([3]) Suppose ψ is analytic and nonconstant for |z| < 1. Then we
have Re{(1− z2)ψ′(z)} ≥ 0 for |z| < 1 if and only if

(1) ψ is univalent on D,

(2) ψ(D) ∈ CIA, and

(3) ψ is normalized by (2.1).

Using this characterization of functions, Hengartner and Schober then proved
the next theorem:

Theorem 2.4.([3]) If ψ is analytic for |z| < 1 and satisfies Re{(1− z2)ψ′(z)} ≥ 0,
then for |z| ≤ r < 1,

|ψ′(0)|(1− r)
(1 + r)(1 + r2)

≤ |ψ′(z)| ≤ |ψ
′(0)|

(1− r)2
.(2.2)

The upper bound is sharp for ψ(z) =
z

1− z
, which maps D onto the right half-

plane Re{z} > 1
2 , and the lower bound is sharp for ψ(z) = ( i2 ) log

(
(1− iz)2

(1− z2)

)
,

which maps D onto a vertical strip, slit from i log
√

2 to infinity along the positive
imaginary axis.

To be able to manipulate these consistent results for the specific functions that
are convex in the proper direction of θ, (0 ≤ θ < π), let us consider the following
typical situation. Suppose that ϕ(z) is a function that is analytic and convex in the
direction of θ, (0 ≤ θ < π). Furthermore, suppose that the ϕ(z) is normalized a
follows.

Let {w′n} and {w′′n} be sequences such that w′n → e−iα and w′′n → −e−iα and

(2.3)

lim
n→∞

Im
{
e−iθϕ(w′n)

}
= sup
|w|<1

Im
{
e−iθϕ(w)

}
,

lim
n→∞

Im
{
e−iθϕ(w′′n)

}
= inf
|w|<1

Im
{
e−iθϕ(w)

}
.

Then z′n = eiαw′n → 1 and z′′n = eiαw′′n → −1 as n→∞. Now define

ψ(z) := ie−iθϕ(e−iαz).(2.4)
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In this case, we have

lim
n→∞

Re {ψ(z′n)} = lim
n→∞

Re
{
ie−iθϕ(e−iαz′n)

}
= lim
n→∞

Im
{
e−iθϕ(e−iαz′n)

}
= sup
|z|<1

Im
{
e−iθϕ(w′n)

}
= sup
|z|<1

Re
{
ie−iαϕ(w′n)

}
= sup
|z|<1

Re {ψ(z′n)} .

Similarly, one can shows that

lim
n→∞

Re {ψ(z′′n)} = inf
|z|<1

Re {ψ(z′′n)} ,

which shows that ψ defined in (2.4) satisfies (2.1). Therefore ψ is univalent and
convex in the direction of the imaginary axis in Theorem 2.4, satisfying the con-
ditions of Theorem 2.3. Replacing the definition of ψ as (2.4) in Theorem 2.3, we
have

Re{(1− z2)ψ′(z)} = Re{ie−iθ(1− z2)ϕ′(z)} ≥ 0

Therefore we can apply Theorem 2.4 to ϕ(z). The result still holds with ψ(z)
replaced by ϕ(z).

Let S0
H(k, θ) denote the subclass of S0

H consisting of functions f = h + g that∣∣∣ g′(z)h′(z)

∣∣∣ ≤ k < 1, convex in the direction of θ for 0 ≤ θ < π and ϕ := h− e2iθg which

satisfy normalization (2.3).

3. Growth and Distortion Theorems

In this section we study the class S0
H(k, θ) and find bounds for |fz(z)|, |fz(z)|

and |f(z)|, as well as coefficient bounds on the series expansion of harmonic quasi
conformal mappings that are univalent and convex in a given direction. As is done

in the litrature for Theorems 2.1 and 2.2, let ϕ = h− e2iθg and w = g′

h′ .

Theorem 3.1. Let f = h+ g ∈ S0
H(k, θ). For |z| ≤ r, we have

1− r
(1 + kr)(1 + r)(1 + r2)

≤ |fz(z)| ≤
1

(1− kr)(1− r)2
(3.1)

and

|ω(z)|(1− r)
(1 + kr)(1 + r)(1 + r2)

≤ |fz(z)| ≤
kr

(1− kr)(1− r)2
.(3.2)
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Equality is obtained for both upper bounds when

ϕ(z) = eiθz/(1− iz) and ω(z) = ke(π/2−2θ)iz,

and for the lower bounds when

ϕ(z) = (eiθ/2) log((1 + z)2/(1 + z2)) and ω(z) = ke(π−2θ)iz.

Proof. Since ϕ′ = h′ − e2iθg′ and g′ = ωh′ we have

fz(z) = h′(z) =
(
ϕ′(z)/(1− e2iθω(z))

)
fz(z) = g′(z) =

(
ω(z)ϕ′(z)/(1− e2iθω(z))

)
Now (ω(z)/k) is a Schwarz function, therefore

|fz(z)| =
∣∣∣∣ ϕ′(z)

1− e2iθω(z)

∣∣∣∣ ≤ |ϕ′(z)|
1− |e2iθ||ω(z)|

≤ |ϕ
′(z)|

1− k|z|
.

Furthermore,

|fz(z)| ≥
|ϕ′(z)|

1 + |e2iθ||ω(z)|
≥ |ϕ

′(z)|
1 + k|z|

.

Using Theorem 2.4 gives inequality (3.1). Similarly,

|fz(z)| =
∣∣∣∣ ω(z)ϕ′(z)

1− e2iθω(z)

∣∣∣∣ ≤ |ω(z)||ϕ′(z)|
1− |e2iθ||ω(z)|

≤ k|z|
1− k|z|

|ϕ′(z)|,

and

|fz(z)| ≥
|ω(z)||ϕ′(z)|

1 + |e2iθ||ω(z)|
≥ |ω(z)||ϕ′(z)|

1 + k|z|
.

Applying Theorem 2.4 again yields (3.2).
The sharpness of the functions comes from examining the sharpness of the func-

tions for Theorem 2.4. Let ϕ(z) = −ieiθψ(e−iαz), and wisely choose the analytic
dilatation ω(z) and α. 2

The mapping properties of these functions are shown in Figures 1 and 2. The
figures illustrate the images of concentric circles and equally spaced rays.

Theorem 3.2. Let f = h+ g ∈ S0
H(k, θ). For |z| ≤ r, we have

|f(z)| ≤ 2k

(1− k)2
ln

(
1− r
1− kr

)
+

(1 + k)r

2(1− k)(1− r)
.(3.3)

Proof. Since f(z) = h(z) + g(z), we have the following equalities:
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(a) Image of D under mapping
ϕ(z) = (z/(1 + iz))

(b) shear of ϕ(z) = (z/(1 + iz))

Figure 1: The shear of ϕ(z) = (z/(1 + iz)) with k = 1, θ = 0.

(a) Image of D under mapping
ϕ(z) = 1/2 log((1+z)2/(1+z2))

(b) shear of ϕ(z) = 1/2 log((1 +
z)2/(1 + z2))

Figure 2: The shear of ϕ(z) = 1/2 log((1 + z)2/(1 + z2)) with k = 1, θ = 0.

(3.4)

f(z) = h(z) + g(z)

=

∫ r

0

h′(ρeiγ)eiγdρ+

∫ r

0

g′(ρeiγ)eiγdρ

=

∫ r

0

h′(ρeiγ)eiγdρ+

∫ r

0

g′(ρeiγ)e−iγdρ

=

∫ r

0

fz(ρe
iγ)eiγdρ+

∫ r

0

fz(ρe
iγ)e−iγdρ.
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Thus

(3.5)

|f(z)| = |h(z) + g(z)| ≤ |h(z)|+ |g(z)|

≤
∫ r

0

|fz(ρeiγ)|dρ+

∫ r

0

|fz(ρeiγ)|dρ.

Applying inequalities in Theorems 3.1 and 3.2 to (3.4) and (3.5) yields

|f(z)| ≤
∫ r

0

1

(1− kρ)(1− ρ)2
dρ+

∫ r

0

kρ

(1− kρ)(1− ρ)2
dρ

=
2k

(1− k)2
ln

(
1− r
1− kr

)
+

(1 + k)r

2(1− k)(1− r)
. 2

Corollary 3.3. In Thorem 3.2, if |fz̄| ≤ k|fz| then

|f(z)| ≤ 2k(1 + k)

(1− k)2
ln(

1− r
1− kr

) |z| ≤ 1.

It is easy to check that if f is conformal, i.e. k = 0 then the estimate is sharp
because the estimate of fz is sharp.

Sheil-Small [11] proved that if f ∈ S0
H and f(D) is convex in one direction, then

the following bounds hold for the coefficients:

|an| ≤
(n+ 1)(2n+ 1)

6
, |bn| ≤

(n− 1)(2n− 1)

6
,

where f(z) = z +
∞∑
k=2

akz
k +

∞∑
k=1

bkzk.

In Theorems 3.1 and 3.2, we described how the geometry of the related ana-
lytic function ϕ(z) affects bounds of a harmonic function and its derivatives. The
following theorem shows how the geometry of ϕ(z) affects the coefficients |an| and
|bn|. We begin by looking at Hengartner and Schober’s result in [3].

Theorem 3.4.([3]) If ψ(z) = a0 +(α+ iβ)z+
∞∑
k=2

akz
k is analytic in D and satisfies

Re
{

(1− z2)ψ′(z)
}
≥ 0, then

|an| ≤ α for n = 2, 4, 6, . . .(3.6)

and

|an| ≤
(

1− 1

n

)
α+

1

n
|α+ iβ| for n = 1, 3, 5, . . .(3.7)

Consequently

|an| ≤ |ψ′(0)| for n = 1, 2, 3, 4, . . .(3.8)
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Equality is obtained in all three inequalities by ψ(z) = 1/(1 − z). Furthermore,
among bounds which depend on both α and β, (3.6) is sharp for the function

ψ(z) =
α

1− z
+
βi

2
log

1 + z

1− z
, α > 0.

Again, suppose that ϕ(z) is a function that is analytic and convex in the direc-
tion of θ(0 ≤ θ < 1). Furthermore, let ϕ(z) be normalized by (2.3). By setting

ψ(z) := ie−iθϕ(e−iαz)(3.9)

the function ψ satisfies (2.1). Thus ψ is univalent and convex in the direction of
the imaginary axis in D. Making use of Theorem 2.2 for ψ, we have

Re{(1− z2)ψ′(z)} = Re{ie−iθ(1− z2)ϕ′(z)} ≥ 0.

Therefore, we can apply Theorem 2.4 to ϕ(z), obtain that the result still holds,
with ψ(z) replaced by ϕ(z).

Theorem 3.5. Let f = h+ g ∈ S0
H(k, θ). Then for |z| ≤ r, we have

|an| ≤
n+ 1

2
, |bn| ≤

n− 1

2
, for n ≥ 2.

Proof. Initiating with the integral representations

h(z) =

∫ z

0

ϕ′(ζ)

1− e2iθω(ζ)
dζ, g(z) =

∫ z

0

ω(ζ)ϕ′(ζ)

1− e2iθω(ζ)
dζ,

where ω(z) = (g′(z)/h′(z)). Let

ϕ(z) =

∞∑
n=1

φnz
n,

and

ω(z)

1− e2iθω(z)
=

∞∑
n=1

wnz
n.

For

g(z) =

∫ z

0

[
φ1 + 2φ2ζ + 3φ3ζ

3 + . . .
] [
w1ζ + w2ζ

2 + w3ζ
3 + . . .

]
dζ

=

∫ z

0

[
φ1w1ζ + (φ1w2 + 2φ2w1)ζ2 + (φ1w3 + 2φ2w2 + 3φ3w1)ζ3 + . . .

]
dζ

=
1

2
(φ1w1)z2 +

1

3
(φ1w2 + 2φ2w1)z3 +

1

4
(φ1w3 + φ2w2 + 3φ3w1)z4 + . . . .
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We have

b1 = 0,

b2 =
1

2
(φ1w1),

b3 =
1

3
(φ1w2 + 2φ2w1),

...

bn =
1

n

n−1∑
k=1

kφkwn−k for n ≥ 2.

Now for h(z),

h(z) =

∫ z

0

ϕ′(ζ)
1

1− e2iθω(ζ)
dζ

=

∫ z

0

ϕ′(ζ)e2iθ

(
ω(ζ)

1− e2iθω(ζ)
+

1

e2iθ

)
dζ

= e2iθ

(∫ z

0

ϕ′(ζ)
ω(ζ)

1− e2iθω(ζ)
dζ

)
+

∫ z

0

ϕ′(ζ)dζ.

Therefore

an = e2iθbn + φn = φn + e2iθ

(
1

n

n−1∑
k=1

kφkwn−k

)
.

Since ω(z)/(1− e2iθω(z)) is subordinated by z/(1− e2iθz), we have |wn| ≤ 1 for all
natural n by [7, p.238]. Also, the descriptions following theorem ?? concludes that
|φk| ≤ |φ′(0)| = 1. In consequence:

|bn| = |
1

n

n−1∑
k=1

kφkwn−k| ≤
1

n

n−1∑
k=1

k|φk||wn−k| ≤
1

n

n−1∑
k=1

k =
n− 1

2
.

Similarly, we have

|an| ≤ |φn|+ |e2iθ|| 1
n

n−1∑
k=1

kφkwn−k| =
1

n

n∑
k=1

k =
n+ 1

2
. 2
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[8] M. Pavlović, Boundary correspondence under harmonic quasiconformal homeomor-
phisms of the unit disk, Ann. Acad. Sci. Fenn. Math., 27(2002), 365–372.

[9] M. M. Shabani and S. Hashemi Sababe, On some classes of spiral-like functions
defined by the Salagean operator, Korean J. Math., 28(2020), 137–147.

[10] M. M. Shabani, M. Yazdi and S. Hashemi Sababe, Some distortion theorems for new
subclass of harmonic univalent functions, Honam Math. J., 42(4)(2020), 701–717.

[11] T. Sheil-Small, Constants for planar harmonic mappings, J. London Math. Soc.,
42(2)(1990), 237–248.

[12] X. Zhang, J. Lu and X. Li, Growth and distortion theorems for almost starlike map-
pings of complex order λ, Acta Math Sci. Ser. B, 28(3)(2018), 769–777.


