A Study on the Changes of Blood Pressure Measurement Factors Before and After Heart Treatment

심장 치료 전후의 혈압 측정 인자의 변화에 관한 연구

  • 최원석 (금오공과대학교 의료산업 혁신대학사업)
  • Received : 2021.04.22
  • Accepted : 2021.06.29
  • Published : 2021.06.30

Abstract

The brachial systolic blood pressure and pulse pressure are the predictors of cardiovascular disease in individuals over 50 years of age. As the stiffness increases, the reflex amplitude and pressure in the late systole increase, resulting in an increase in left ventricular load and myocardial oxygen demand. Therefore, it is necessary to study how stiffness affects blood pressure. In this study, the blood pressure pulse waves were measured before and after taking the drug, and the blood pressure pulse wave was measured before and after myocardial heart transplantation in patients with heart failure. The correlation between R, L, and C components of the Windkessel model was estimated by increasing blood pressure. As a result of modeling the parameters of the Windkessel model using the curve fitting method, the increase in blood pressure and decrease in systolic rise time were due to the increase in the L component in the RLC Windkessel model. Among the various mechanical characteristics of blood vessels, the most important parameter affecting high BP waveform is the inertance.

상완 수축기 혈압과 맥압은 50세 이상의 개인에서 심혈관 질환의 예측 인자이다. 강성이 증가함에 따라 수축기 후기의 반사 진폭과 압력이 증가하여 좌심실 부하와 심근 산소 요구량이 증가한다. 따라서 강성이 혈압에 미치는 영향을 연구 할 필요가 있다. 본 연구에서는 약물 복용 전후에 혈압 맥파를 측정하고, 심부전 환자에서 심근 심장 이식 전후에 혈압 맥파를 측정하였다. Windkessel 모델의 R, L 및 C 구성 요소 간의 상관관계는 혈압을 높임으로써 추정되었다. 커브 피팅 방법을 사용하여 Windkessel 모델의 매개 변수를 모델링 한 결과 혈압의 증가와 수축기 상승 시간의 감소는 RLC Windkessel 모델의 L 성분이 증가했기 때문이다. 혈관의 다양한 기계적 특성 중에 높은 BP 파형에 영향을 미치는 가장 중요한 매개 변수는 실험결과로 이너턴스인 것을 증명하였다.

Keywords

References

  1. Frank, O., 1899, "Die Grundform des arterielen Pulses erste Abhandlung: mathematische Analyse," Z. Biol., 37, pp. 483-526.
  2. Stergiopulos, N., Meister, J. J., and Westerhof, N., 1995, "Evaluation of methods for the estimation of total arterial compliance," Am. J. Physiol., 268 (Heart Circ Physiol 37), pp. H1540-H1548.
  3. Burattini, R., and Gnudi, G., 1982, "Computer identification of models for the arterial tree input impedance: comparison between two new simple models and first experimental results," Med. Biol. Eng. Comput., 20, pp. 134-144. https://doi.org/10.1007/BF02441348
  4. Stergiopulos, N., Westerhof, B. E., and Westerhof, N., 1999, "Total arterial inertance as the fourth element of the windkessel model," Am. J. Physiol., 276 (Heart Circ Physiol 45), pp. H81-H88.
  5. Segers, P., Rietzsxhel, E. R., De Buyzere, M. L., Stergiopulos, N., Westerhof, N., Van Bortel, L. M., Gillebert, T., and Verdonck, P. R., 2008, "Three- and four-element Windkessel models: assessment of their fitting performance in a large cohort of healthy middle-aged individuals," Proc. IMchE, 222, pp. 417-428.
  6. Westerhof, N., Lankhaar, J. W., and Westerhof, B. E., 2009, "The arterial Windkessel," Med. Biol. Eng. Comput., 47, pp. 131-141. https://doi.org/10.1007/s11517-008-0359-2
  7. Qiao, Y., Fan, J., Ding, Y., Zhu, T, and Luo, K., 2019, "A primary computational fluid dynamics study of preand post-TEVAR with intentional left subclavian artery coverage in a type B aortic dissection", J. Biomech. Eng., 141, pp. 111002. https://doi.org/10.1115/1.4043881
  8. Zahedi, E., Chellappan, K., Ali, M. A. M., 2007, "Singh, H. Analysis of the Effect of Ageing on Rising Edge Characteristics of the Photoplethysmogram using a Modified Windkessel Model," Cardiovasc. Eng., 7, pp. 172-181. https://doi.org/10.1007/s10558-007-9037-5
  9. Burattini, R., and Gnudi, G., 1982, "Computer identification of models for the arterial tree input impedance: comparison between two new simple models and first experimental results," Med. Biol. Eng. Comput., 20, pp. 134-144. https://doi.org/10.1007/BF02441348
  10. Benetos, A., Safar, M., Rudnichi, A., Smulyan, H., Richard, J. L., Ducimetieere, P., and Guize, L., 1997, "Pulse pressure: a predictor of long-term catdiovascular mortality in a French male population," Hypertension, 30, pp. 1410-1415. https://doi.org/10.1161/01.hyp.30.6.1410
  11. Mitchell, G. F., Moye, L. A., Braunwald, E., Rouleau, J. L., Bernstein, V., Geltman, E.M., Flaker, G. C., and Pfeffer, M. A., 1997, "Sphygmomanometrically determined pulse pressure is a powerful independent predictor of recurrent events after myocardial infarction in patients with impaired left ventricular function SAVE investigators. Survival and ventricular enlargement," Circulation, 96, pp. 4254-4260. https://doi.org/10.1161/01.CIR.96.12.4254
  12. Wilmer W. Nichols, Scott J. Denardo, Ian B. Wilkinson, Carmel M. McEniery, John Cockcroft, Michael F. O'Rourke,2008, "Effects of Arterial Stiffness, Pulse Wave Velocity, and Wave Reflections on the Central Aortic Pressure Waveform",The Journal of hypertension, pp.295-303.
  13. Shirouzu, S., Shirouzu, E., Tsuda, Y., and Sugano, H., 1998, "Circulatory parameter extraction from digital plethysmogram I: waveform analysis of digital plethysmogram," Proceedings of the 20th annual international conference of the IEEE Engineering in medicine and biology society, 20, pp. 3087-3089.