DOI QR코드

DOI QR Code

고성능 감수제 종류에 따른 섬유보강 무시멘트 복합재료의 인장거동 및 균열 패턴

Tensile Behavior and Cracking Patterns of Fiber-Reinforced Cementless Composites According to Types of Superplasticizers

  • 박세언 (전남대학교 건축토목공학과) ;
  • 최정일 (전남대학교 바이오하우징연구소) ;
  • 김윤용 (충남대학교 토목공학과) ;
  • 이방연 (전남대학교 건축학부)
  • Park, Se-Eon (Department of Architecture and Civil Engineering, Chonnam National University) ;
  • Choi, Jeong-Il (Biohousing Research Center, Chonnam National University) ;
  • Kim, Yun Yong (Department of Civil Engineering, Chungnam National University) ;
  • Lee, Bang Yeon (School of Architecture, Chonnam National University)
  • 투고 : 2021.04.23
  • 심사 : 2021.05.14
  • 발행 : 2021.06.30

초록

이 연구의 목적은 고성능 감수제의 종류가 알칼리활성 슬래그 기반 무시멘트 복합재료의 인장거동과 균열패턴에 미치는 영향을 실험적으로 조사하는 것이다. 이를 위하여 고성능 감수제 종류에 따라 3종류의 배합을 준비하였고, 압축강도 및 인장실험을 수행하였다. 실험결과 혼합 후 굳기 전에 섬유뭉침이나 섬유의 쏠림이 없었지만 고성능 감수제의 종류에 따라 복합재료의 인장강도, 인장변형성능, 그리고 인성은 최대 28.1%, 39.1%, 66.2% 차이가 나는 것으로 나타났다. 또한 고성능 감수제는 균열개수와 최대 섬유 가교 응력에 영향을 주는 것으로 나타났다.

The purpose of this study is to investigate experimentally the effects of type of superplasticizer on tensile behavior and cracking pattern of alkali-activated slag-based cementless composite. Three mixtures were prepared according to type of superplasticizer, and the compressive strength and tension tests were performed. Test results showed that differences of tensile strength, tensile strain capacity, and toughness of composites were up to 28.1%, 39.1%, and 66.2%, respectively, according to type of superplasticizer, although fiber balling or poor dispersion of fibers in fresh composites was not observed. It was also observed that the type of superplasticizer influenced number of cracks and maximum fiber bridging stress.

키워드

과제정보

본 연구는 국토교통부/국토교통과학기술진흥원의 지원으로 수행되었음(과제번호 21SCIP-C159060-02).

참고문헌

  1. Chen, B., Liu, J. (2004). Effect of aggregate on the fracture behavior of high strength concrete, Construction and Building Materials, 18, 585-590. https://doi.org/10.1016/j.conbuildmat.2004.04.013
  2. Choi, J.I., Lee, B.Y., Ranade, R., Li, V.C., Lee, Y. (2016). Ultra-high-ductile behavior of a polyethylene fiber-reinforced alkali-activated slag-based composite, Cement and Concrete Composites, 70, 153-158 https://doi.org/10.1016/j.cemconcomp.2016.04.002
  3. JSCE. (2008). Recommendations for Design and Construction of High Performance Fiber Reinforced Cement Composites with Multiple Fine Cracks (HPFRCC), Concrete Engineering Series.
  4. Kanda, T., Li, V.C. (2006). Practical design criteria for saturated pseudo strain hardening behavior in ECC, Journal of Advanced Concrete Technology, 4(1), 59-72. https://doi.org/10.3151/jact.4.59
  5. Lee, B.Y., Cho, C.G., Lim, H.J., Song, J.K., Yang, K.H., Li, V.C. (2012). Strain hardening fiber reinforced alkali-activated mortar-a feasibility study, Construction and Building Materials, 37, 15-20. https://doi.org/10.1016/j.conbuildmat.2012.06.007
  6. Lee, B.Y., Lee, Y., Kim, J.K., Kim, Y.Y. (2010). Micromechanics-based fiber-bridging analysis of strain-hardening cementitious composite accounting for fiber distribution, Computer Modeling in Engineering & Sciences, 61(2), 111-132.
  7. Li, M., Li, V.C. (2013). Rheology, fiber dispersion, and robust properties of engineered cementitious composites, Materials and Structures, 46(3), 405-420. https://doi.org/10.1617/s11527-012-9909-z
  8. Li, V.C., Leung, C.K. (1992). Steady-state and multiple cracking of short random fiber composites, Journal of Engineering Mechanics, 118(11), 2246-2264. https://doi.org/10.1061/(ASCE)0733-9399(1992)118:11(2246)
  9. Li, V.C., Wang, S., Wu, C. (2001). Tensile strain-hardening behavior of PVA-ECC, ACI Materials Journal, 98(6), 483-492.
  10. Maalej, M., Li, V.C. (1994). Flexural/tensile-strength ratio in engineered cementitious composites, Journal of Materials in Civil Engineering, 6(4), 513-528. https://doi.org/10.1061/(ASCE)0899-1561(1994)6:4(513)
  11. Malhotra, V.M. (2001). Introduction: sustainable development and concrete technology, Concrete Internal, 24(7), 22.
  12. Mindess, S., Young, J.F., Darwin, D. (2003). Concrete, Prentice-Hall Englewood Cliffs, NJ, 317
  13. Van Damme, H. (2018). Concrete material science: past, present, and future innovations, Cement and Concrete Research, 112, 5-24. https://doi.org/10.1016/j.cemconres.2018.05.002