DOI QR코드

DOI QR Code

Investigation of Fungal Strains Composition in Fruit Pollens for Artificial Pollination

  • Do, Heeil (Division of Applied Life Science, Gyeongsang National University) ;
  • Kim, Su-Hyeon (Division of Applied Life Science, Gyeongsang National University) ;
  • Cho, Gyeongjun (Division of Applied Life Science, Gyeongsang National University) ;
  • Kim, Da-Ran (Research Institute of Life Science, Gyeongsang National University) ;
  • Kwak, Youn-Sig (Division of Applied Life Science, Gyeongsang National University)
  • Received : 2021.01.11
  • Accepted : 2021.02.17
  • Published : 2021.06.30

Abstract

Plants pollination are conducted through various pollinators such as wind, animals, and insects. Recently, the necessity for artificial pollination is drawing attention as the proportion of natural pollinators involved is decreasing over the years. Likewise, the trade in pollen for artificial pollination is also increasing worldwide. Through these imported pollens, many unknown microorganisms can flow from foreign countries. Among them, spores of various fungi present in the particles of pollen can be dispersed throughout the orchard. Therefore, in this study, the composition of fungal communities in imported pollen was revealed, and potential ecological characteristics of the fungi were investigated in four types of imported pollen. Top 10 operational taxonomic unit (OTU) of fungi were ranked among the following groups: Alternaria sp., Cladosporium sp., and Didymella glomerata which belong to many pathogenic species. Through FUNGuild analysis, the proportion of OTUs, which is assumed to be potentially plant pathogens, was higher than 50%, except for apple pollen in 2018. Based on this study of fungal structure, this information can suggest the direction of the pollen quarantine process and contribute to fungal biology in pollen

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) [2020R1A2C2004177].

References

  1. Bawa KS. Plant-pollinator interactions in tropical rain forests. Annu Rev Ecol Syst. 1990;21(1):399-422. https://doi.org/10.1146/annurev.es.21.110190.002151
  2. Dusza Y, Kraepiel Y, Abbadie L, et al. Plant-pollinator interactions on green roofs are mediated by substrate characteristics and plant community composition. Acta Oecol. 2020;105:103559. https://doi.org/10.1016/j.actao.2020.103559
  3. Faegri K, van der P. The principles of pollination ecology. Amsterdam, Netherlands: Elsevier; 1979.
  4. Eilers EJ, Kremen C, Greenleaf SS, et al. Contribution of pollinator-mediated crops to nutrients in the human food supply. PLoS One. 2011;6(6):e21363. https://doi.org/10.1371/journal.pone.0021363
  5. Klatt BK, Holzschuh A, Westphal C, et al. Bee pollination improves crop quality, shelf life and commercial value. Proc Biol Sci. 2014;281(1775):20132440.
  6. Hegland SJ, Nielsen A, Lazaro A, Bjerknes AL, et al. How does climate warming affect plant-pollinator interaction? Ecol Lett. 2009;12(2):184-195. https://doi.org/10.1111/j.1461-0248.2008.01269.x
  7. Potts SG, Biesmeijer JC, Kremen C, et al. Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol. 2010;25(6):345-353. https://doi.org/10.1016/j.tree.2010.01.007
  8. Rhodes CJ. Pollinator decline - an ecological calamity in the making? Sci Prog. 2018;101(2):121-160. https://doi.org/10.3184/003685018x15202512854527
  9. Chauta-Mellizo A, Campbell SA, Bonilla MA, et al. Effects of natural and artificial pollination on fruit and offspring quality. Basic Appl Ecol. 2012;13(6):524-532. https://doi.org/10.1016/j.baae.2012.08.013
  10. Abu-Zahra TR, Al-Abbadi AA. Effects of artificial pollination on Pistachio (Pistacia vera L.) fruit cropping. J Plant Sci. 2007;2(2):228-232. https://doi.org/10.3923/jps.2007.228.232
  11. Sutyemez M. Pollen quality, quantity and fruit set of some self-compatible and self-incompatible cherry cultivars with artificial pollination. Afr Biotechnol. 2011;10:3380-3386. https://doi.org/10.5897/AJB10.2013
  12. Burge HA. An update on pollen and fungal spore aerobiology. J Allergy Clin Immunol. 2002;110(4):544-552. https://doi.org/10.1067/mai.2002.128674
  13. Vannette RL. The floral microbiome: plant, pollinator, and microbial perspectives. Annu Rev Ecol Evol Syst. 2020;51(1):363-386. https://doi.org/10.1146/annurev-ecolsys-011720-013401
  14. Kostic AZ, Milincic DD, Petrovic S, et al. Mycotoxins and mycotoxin producing fungi in pollen. Review Toxins. 2019;11(2):64. https://doi.org/10.3390/toxins11020064
  15. Sadys M. Effects of wind speed and direction on monthly fluctuations of Cladosporium conidia concentration in the air. Aerobiologia. 2017;33(3):445-456. https://doi.org/10.1007/s10453-017-9482-6
  16. Thomma BPHJ, van Esse HP, Crous PW, et al. Cladosporium fulvum (syn. Passalora fulva), a highly specialized plant pathogen as a model for functional studies on plant pathogenic Mycosphaerellaceae. Mol Plant Pathol. 2005;6(4):379-393. https://doi.org/10.1111/j.1364-3703.2005.00292.x
  17. Grinn-Gofron A, Nowosad J, Bosiacka B, et al. Airborne Alternaria and Cladosporium fungal spores in Europe: forecasting possibilities and relationships with meteorological parameters. Sci Total Environ. 2019;653:938-946. https://doi.org/10.1016/j.scitotenv.2018.10.419
  18. Heald CL, Spracklen DV. Atmospheric budget of primary biological aerosol particles from fungal spores. Geophys Res Lett. 2009;36:L09806. https://doi.org/10.1029/2009GL037493
  19. Chen KW, Marusciac L, Tamas PT, et al. Ragweed pollen allergy: burden, characteristics, and management of an imported allergen source in Europe. Int Arch Allergy Immunol. 2018;176(3-4):163-180. https://doi.org/10.1159/000487997
  20. Williams RH, Ward E, McCartney HA. Methods for integrated air sampling and DNA analysis for detection of airborne fungal spores. Appl Environ Microbiol. 2001;67(6):2453-2459. https://doi.org/10.1128/AEM.67.6.2453-2459.2001
  21. Buters JTM, Antunes C, Galveias A, et al. Pollen and spore monitoring in the world. Clin Transl Allergy. 2018;8(1):9. https://doi.org/10.1186/s13601-018-0197-8
  22. Ito K, Murphy D. Application of ggplot2 to pharmacometric graphics. CPT Pharmacometrics Syst Pharmacol. 2013;2:e79.
  23. von Wintzingerode F, Landt O, Ehrlich A, et al. Peptide nucleic acid-mediated PCR clamping as a useful supplement in the determination of microbial diversity. Appl Environ Microbiol. 2000;66(2):549-557. https://doi.org/10.1128/AEM.66.2.549-557.2000
  24. Callahan BJ, McMurdie PJ, Rosen MJ, et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13(7):581-583. https://doi.org/10.1038/nmeth.3869
  25. Abarenkov K, Nilsson RH, Larsson KH, et al. The UNITE database for molecular identification of fungi-recent updates and future perspectives. New Phytol. 2010;186(2):281-285. https://doi.org/10.1111/j.1469-8137.2009.03160.x
  26. Gotelli NJ, Chao A. Measuring and estimating species richness, species diversity, and biotic similarity from sampling data. In: Levin SA, editor. Encyclopedia of biodiversity. 2nd ed. Waltham, MA: Academic press; 2013. p195-211.
  27. Hsieh TC, Ma KH, Chao A. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol Evol. 2016;7(12):1451-1456. https://doi.org/10.1111/2041-210X.12613
  28. Tang Y, Horikoshi M, Li W. Unified interface to visualize statistical results of popular R packages. R J. 2016;8(2):474-485. https://doi.org/10.32614/rj-2016-060
  29. McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One. 2013;8(4):e61217. https://doi.org/10.1371/journal.pone.0061217
  30. Lahti L, Shetty S. Tools for microbiome analysis in R. Version. 2017. Available from: https://microbiome.github.io/tutorials/.
  31. Datta S, Satten GA. Rank-sum tests for clustered data. J Am Stat Assoc. 2005;100(471):908-915. https://doi.org/10.1198/016214504000001583
  32. Dixon P. VEGAN, a package of R functions for community ecology. J Veg Sci. 2003;14(6):927-930. https://doi.org/10.1111/j.1654-1103.2003.tb02228.x
  33. Wickham H, Chang W. devtools: tools to make developing R packages easier. R package version 1.13. 4. 2018. Available from: https://devtools.r-lib.org
  34. Nguyen NH, Song Z, Bates ST, et al. FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 2016;20:241-248. https://doi.org/10.1016/j.funeco.2015.06.006
  35. Hedayati MT, Pasqualotto AC, Warn PA, et al. Aspergillus flavus: human pathogen, allergen and mycotoxin producer. Microbiology. 2007;153(Pt 6):1677-1692. https://doi.org/10.1099/mic.0.2007/007641-0
  36. Li B, Zong Y, Du Z, et al. Genomic characterization reveals insights into patulin biosynthesis and pathogenicity in Penicillium species. Mol Plant Microbe Interact. 2015;28(6):635-647. https://doi.org/10.1094/MPMI-12-14-0398-FI
  37. Chen Q, Hou LW, Duan WJ, et al. Didymellaceae revisited. Stud Mycol. 2017;87:105-159. https://doi.org/10.1016/j.simyco.2017.06.002
  38. Rakhimova YV. A new record of Podosphaera cardamines (Erysiphales, Erysiphaceae) from Kazakhstan. Plant Pathol Quar. 2016;6(2):137-140. https://doi.org/10.5943/ppq/6/2/4
  39. Stankeviciene A. The spread of fungi Erysiphaceae Tul. & C. Tul on the woody plants at the city green plantations in Lithuania. Acta Biol. 2017;17:107-114.
  40. Prasongsuk S, Lotrakul P, Ali I, et al. The current status of Aureobasidium pullulans in biotechnology. Folia Microbiol. 2018;63(2):129-140. https://doi.org/10.1007/s12223-017-0561-4
  41. Bussamara R, Fuentefria AM, de Oliveira ES, et al. Isolation of a lipase-secreting yeast for enzyme production in a pilot-plant scale batch fermentation. Bioresour Technol. 2010;101(1):268-275. https://doi.org/10.1016/j.biortech.2008.10.063