DOI QR코드

DOI QR Code

Development of a New Munk-type Breaker Height Formula Using Machine Learning

머신러닝을 이용한 새로운 Munk-type 쇄파파고 예측식의 제안

  • Choi, Byung-Jong (Graduate School of Catholic Kwandong University) ;
  • Nam, Hyung-Sik (Division of Logstics, Environmental and Civil Engineering) ;
  • Lee, Kwang-Ho (Division of Logstics, Environmental and Civil Engineering)
  • 최병종 (가톨릭관동대학교) ;
  • 남형식 (한국해양대학교 물류.환경.도시인프라공학부) ;
  • 이광호 (한국해양대학교 물류.환경.도시인프라공학부)
  • Received : 2021.05.03
  • Accepted : 2021.06.18
  • Published : 2021.06.30

Abstract

Breaking wave is one of the important design factors in the design of coastal and port structures as they are directly related to various physical phenomena occurring on the coast, such as onshore currents, sediment transport, shock wave pressure, and energy dissipation. Due to the inherent complexity of the breaking wave, many empirical formulas have been proposed to predict breaker indices such as wave breaking height and breaking depth using hydraulic models. However, the existing empirical equations for breaker indices mainly were proposed via statistical analysis of experimental data under the assumption of a specific equation. In this study, a new Munk-type empirical equation was proposed to predict the height of breaking waves based on a representative linear supervised machine learning technique with high predictive performance in various research fields related to regression or classification challenges. Although the newly proposed breaker height formula was a simple polynomial equation, its predictive performance was comparable to that of the currently available empirical formula.

쇄파는 연안류, 표사이동, 충격파압, 에너지소산 등과 같은 연안에서 발생하는 다양한 물리현상과 직접적인 관계가 있으므로 항만 구조물의 설계시 반드시 고려되어야 하는 중요한 설계인자 중 하나이다. 쇄파에 대한 연구들은 쇄파가 가진 고유의 복잡성으로 인해 주로 수리모형실험을 통해 쇄파파고와 쇄파수심 등과 같은 쇄파지표를 예측하기 위한 많은 경험식이 제안되어 왔다. 하지만, 기존의 쇄파지표에 대한 경험식은 일정한 방정식의 가정하에 자료의 통계적 분석을 통해 가정한 방정식의 계수들을 결정하고 있다. 본 연구에서는 회귀 혹은 분류문제와 관련된 다양한 연구분야에 있어서 높은 예측성능을 보여주는 대표적인 선형기반의 머신러닝 기법을 적용하여 천수변형에 의해 발생하는 쇄파의 한계파고를 산정하기 위한 새로운 Munk형식의 경험식을 제안하였다. 새롭게 제안된 쇄파지표식은 단순한 형태의 다항식에도 불구하고 기존의 경험공식과 유사한 예측성능을 보였다.

Keywords

References

  1. Arlot, S. and Celisse, A.(2010), "A Survey of Cross-validation Procedures for Model Selection", Static Surveys, Vol. 4. pp. 40-79.
  2. Bergstra, J. and Bengio, Y.(2012), "Random Search for Hyper-parameter Optimization", Journal of Machine Learning Research, Vol. 13, pp. 281-305.
  3. Bradford, S. F.(2000), "Numerical simulation of surf zone dynamics", Journal of Waterway Port Coastal and Ocean Engineering, Vol. 126, pp. 1-13. https://doi.org/10.1061/(ASCE)0733-950X(2000)126:1(1)
  4. Camenen, B. and Larson, M.(2007), "Predictive Formulas for Breaker Depth Index and Breaker Type", Journal of Coastal Research, Vol. 73, No. 8, pp. 1028-1041. https://doi.org/10.2112/05-0566.1
  5. Chella, M. A., Bihs, H., Myrhaug, D. and Muskulus, M.(2015), "Breaking Characteristics and Geometric Properties of Spilling Breakers over Slopes", Coastal Engineering, Vol. 95, pp. 4-19. https://doi.org/10.1016/j.coastaleng.2014.09.003
  6. Christensen, E. D.(2006), "Large Eddy Simulation of Spilling and Plunging Breakwaters", Coastal Engineering, Vol. 53, pp. 463-485. https://doi.org/10.1016/j.coastaleng.2005.11.001
  7. Deo, M. C and Jagdale, S. S.(2003), "Prediction of Breaking Waves with Neural Networks", Ocean Engineering, Vol. 30, pp. 1163-1178. https://doi.org/10.1016/S0029-8018(02)00086-0
  8. Fisher, M. A. and Bolles, R. C.(1981), "Random Sample Consensus: a Paradigm for Model Fitting with Aapplications to Image Analysis and Automated Cartography", Communications of the ACM, Vol. 24, No. 6, pp. 381-395. https://doi.org/10.1145/358669.358692
  9. Galvin, C. J.(1969), "Breaker Travel and Choice of Design Wave Height", Journal of Waterway and Harbor Davison, ASCE, Vol. 95, No. 2, pp. 175-200.
  10. Goda, Y.(1970), "A Synthesis of Breaker Indices", Transactions of the Japan Society of Civil Engineers, Vol. 2, No. 2, pp. 39-40.
  11. Goda, Y.(2010), "Reanalysis of Regular and Rrandom Breaking Wave Statistics", Coastal Engineering Journal, Vol. 52, No. 1, pp. 71-106. https://doi.org/10.1142/S0578563410002129
  12. Hieu, P. D., Katsutoshi, T. and Ca, V. T.(2004), "Numerical Simulation of Breaking Waves using a Two-phase Flow Model", Applied Mathematical Modelling, Vol. 28, pp. 983-1005. https://doi.org/10.1016/j.apm.2004.03.003
  13. Horikawa, K. and Kuo, C.(1966), "A Study of Wave Transformation Inside the Surf zone", Proceedings, 10th Coastal Engineering Conference, ASCE, pp. 217-233.
  14. Iversen, H. W.(1951), "Laboratory Study of Breakers Gravity Waves", Circukar 521, Paper 3, National Bureau of Standards, Washington, D. C., pp. 9-32.
  15. Iwagaki, Y., Sakai, T., Tsukioda, K. and Sawai, N.(1974), "Relationship between Vertical Distribution of Water Particle Velocity and Type of Breaker on Beaches", Coastal Engineering in Japan, Vol. 17, pp. 51-58. https://doi.org/10.1080/05785634.1974.11924182
  16. Kakuno, S., Sugita, T. and Goda, T.(1996), "Effects of Wave Breaking on Entrainment of Oxygen, a Review", Proceedings, 43rd Japanese Conference on Coastal Engineering, JSCE, pp. 1211-1215 (in Japanese).
  17. Lee, K. H., Kim, T. G. and Kim, D. S.(2020), "Prediction of Wave Breaking Using Machine Learning Open Source Platform", Journal of Korean Society of Coastal and Ocean Engineers, Vol. 32, No. 4, pp. 262-272. https://doi.org/10.9765/KSCOE.2020.32.4.262
  18. LeMehaute, B. and Koh, R. C. Y.(1967), "On the Breaking of Waves Arriving at an Angle to the Shore. Journal of Hydraulic Research, Vol. 5, No. 1, pp. 67-68. https://doi.org/10.1080/00221686709500189
  19. Liu, Y., Niu, X. and Yu, X.(2011), "A New Predictive Formula for Inception of Regular Wave Breaking", Coastal Engineering, Vol. 58, No. 9, pp. 877-889. https://doi.org/10.1016/j.coastaleng.2011.05.004
  20. Mizuguchi, M.(1980), "A Heuristic Model of Wave Height Distribution in the Surf Zone", Proceedings, 17th Coastal Engineering Conference, ASCE, pp. 278-289.
  21. Rattanapitikon, W. and Shibayama, T.(2000), "Verification and Modification of Breaker Height Formulas", Coastal Engineering Journal, Vol. 48, No. 4, pp. 395-416. https://doi.org/10.1142/S0578563406001489
  22. Rattanapitikon, W. and Shibayama, T.(2006), "Breaking Wave Formulas for Breaking Depth and Orbital to Phase Velocity Ratio", Coastal Engineering Journal, Vol. 48, No. 4, pp. 395-416. https://doi.org/10.1142/S0578563406001489
  23. Saeki, H. and Sasaki, M.(1973), "A Study of the Deformation of Waves after Breaking", Proceedings, 20th Japanese Conference on Coastal Engineering, JSCE, pp. 559-564 (in Japanese).
  24. Singamsetti, S. and Wind, H.(1980), "Characteristics of Breaking and Shoaling Periodic Waves Normally Incident on to Plane Beaches of Constant Slope", Technical Report M1371, Delft Hydraulics Laboratory, the Netherlands.
  25. Tomasicchio, G. R., Kurdistani, S. M., D'Alessandro, F. and Hassanabadi, L.(2020), "Simple Wave Breaking Depth Index Formula for Regular Waves", Journal of Waterway, Port, Coastal, and Ocean Engineering, Vol. 146, No. 1, 06019001. https://doi.org/10.1061/(asce)ww.1943-5460.0000539
  26. Vapnik, V. N.(1995), "The Nature of Statistical Learning Theory". Springer, New York.
  27. Visser, P.(1982), "The Proper Longshore Current in a Wave Basin", Technical Report No. 82-1, Delft University of Technology, the Netherlands.
  28. Walker, J.(1974), "Wave Transformations over a Sloping Bottom and over a Three Dimensional Shoal", Technical Report 11, Laboratory of Oceanographic Engineering, University of Hawaii, USA.
  29. Xie, W., Shibayama, T. and Esteban, M.(2019), "A Semi-empirical Formula for Calculating the Breaking Depth of Plunging Waves", Coastal Engineering Journal, Vol. 61, No. 2, pp. 199-209. https://doi.org/10.1080/21664250.2019.1579459
  30. Zhao, Q., Armfield, S. and Tanimoto, K.(2004), "Numerical Simulation of Breaking Waves by a Multi-scale Turbulence Model", Coastal Engineering, Vol. 51, pp. 53-80. https://doi.org/10.1016/j.coastaleng.2003.12.002