DOI QR코드

DOI QR Code

국내 우주환경 자료 보유 현황: 전리권/고층대기

Ionospheric and Upper Atmospheric Observations in Korea

  • 투고 : 2021.08.06
  • 심사 : 2021.08.12
  • 발행 : 2021.08.31

초록

한국우주과학회 태양우주환경분과에서는 국내 우주환경 관측 자료 활용도를 높이고, 분야 간 융합 연구 기회를 모색하기 위해 국내 연구소와 대학에서 활용 중인 태양, 자기권, 전리권/고층대기 자료 현황을 조사하였다. 자료는 관측 방식에 따라 지상과 위성 자료로 분류하였고, 개발 또는 활용 중인 모델 정보도 포함한다. 이 논문에서는 조사 결과를 바탕으로 극지연구소와 한국천문연구원에서 운영하는 전리권/고층대기관측기 현황과 자료 설명 및 활용 방법 등을 소개한다. 극지연구소에서는 남극 장보고과학기지와 세종과학기지, 그리고 북극 다산과학기지에 전천 카메라, 페브리-페로 간섭계, 이오노존데 등을 설치해 운영 중이다. 한국천문연구원은 보현산천문대 전천카메라와 충남 계룡대 VHF(Very High Frequency)/유성 레이더를 운영하고 있으며, 국내 40여 개 GNSS(Global Navigation Satellite System) 관측소에서 수집한 자료를 사용해 전리권 전자밀도 정보(total electron content)를 산출하고 있다. 또한 보현산천문대와 탐라 KVN천문대에 GNSS 신틸레이션 수신기를 설치해 전리권 교란을 관측하고 있다. 현재 관측 자료들은 웹 페이지나 FTP, 또는 요청을 통해 이용할 수 있다. 이 밖에 논문에 담지 않은 기타 전리권/고층대기 분야 자료 현황은 한국우주과학회 홈페이지에서 다운로드할 수 있다(http://ksss.or.kr/). 이 논문을 통해 우주과학 연구자들이 우주과학 자료에 대한 장기적이고 연속적인 관리의 중요성을 인식하고, 국내에서 생산 중인 자료의 활용도와 신뢰도를 높이는 데 이바지할 수 있길 기대한다. 더불어 국내 관측 자료의 활용을 극대화하기 위한 새로운 데이터 공유 체계에 관한 논의를 시작하는 계기가 되길 바란다.

In 2020, the solar and space environment division at the Korea Space Science Society surveyed the status of data archives in solar physics, magnetosphere, and ionosphere/upper atmosphere in Korea to promote broader utilization of the data and research collaboration. The survey includes ground- and satellite-based instruments and developing models by research institutes and universities in Korea. Based on the survey results, this study reports the status of the ground-based instruments, data products in the ionosphere and upper atmosphere, and documentation of them. The ground-based instruments operated by the Korea Polar Research Institute and Korea Astronomy and Space Science Institute include ionosonde, Fabry-Perot interferometer in Arctic Dasan stations, Antarctic King Sejong/Jang Bogo stations, and an all-sky camera, VHF radar in Korea. We also provide information on total electron content and scintillation observations derived from the Global Navigation Satellite System (GNSS) station networks in Korea. All data are available via the webpage, FTP, or by request. Information on ionospheric data and models is available at http://ksss.or.kr. We hope that this report will increase data accessibility and encourage the research community to engage in the establishment of a new Space Science Data Ecosystem, which supports archiving, searching, analyzing, and sharing the data with diverse communities, including educators, industries, and the public as wells as the research scientist.

키워드

과제정보

이 연구는 한국우주과학회 태양우주환경분과 소속 회원들의 공동 작업(극지연구소, 한국천문연구원, 국립전파연구원, 인공위성연구소, 전남대학교, 충남대학교, 충북대학교)으로 진행하였고, 태양우주환경분과 운영위원(민경국, 박경선, 오수연, 이우경, 이진이, 이창섭)이 대표로 논문을 작성했습니다. 태양우주환경분과 회원들의 적극적인 협조에 감사드립니다. 특히 논문 작성과 검토에 많은 도움을 주신 곽영실, 권혁진, 지건화 회원께 감사드립니다.

참고문헌

  1. Park YK, Kwak YS, Ahn BH, Park YD, Cho HH, Ionospheric F2-layer semi-annual variation in middle latitude by solar activity, J. Astron. Space Sci. 27, 319-327 (2010). https://doi.org/10.5140/JASS.2010.27.4.319
  2. Kim E, Chung JK, Kim YH, Jee G, Hong SH, et al., A climatology 494 study on ionospheric F2 peak over Anyang, Korea. Earth, Planets Space, 63, 335-349 (2011). https://doi.org/10.5047/eps.2011.03.011
  3. Yun J, Kim YH, Kim E, Kwak YS, Hong SH, Unusual enhancements of NmF2 in Anyang ionosonde data, J. Astron. Space Sci. 30, 223-230 (2013). https://doi.org/10.5140/JASS.2013.30.4.223
  4. Park YK, Kwak YS, Ahn BH, Seasonal and latitudinal variations of the F2-Layer during magnetic storms, J. Astron. Space Sci. 30, 123-131 (2013). https://doi.org/10.5140/JASS.2013.30.4.231
  5. Jung SH, Kim YH, Kim KN, Manual scaling of ionograms measured at Jeju (33.4°N, 126.3°E) Throughout 2012, J. Astron. Space Sci. 35, 143-149 (2018). https://doi.org/10.5140/JASS.2018.35.3.143
  6. Jo E, Kim YH, Moon S, Kwak YS, Seasonal and local time variations of sporadic E layer over South Korea. J. Astron. Space Sci. 36, 61-68 (2019). https://doi.org/10.5140/JASS.2019.36.2.61
  7. Lee S, Kim YH, Jung SH, Kwak YS, Yun J, Manually scaling ionograms measured by Icheon and Jeju ionosondes over a 2-year period (2017-2018), J. Korean Phys. Soc. 78, 1249-1265 (2021). https://doi.org/10.1007/s40042-021-00174-3
  8. Kim JH, Kim YH, Lee CS, Jee G, Seasonal variation of meteor decay times observed at King Sejong Station (62.22°S, 58.78°W), Antarctica, J. Atmos. Sol.-Terr. Phys. 72, 883-889 (2010). https://doi.org/10.1016/j.jastp.2010.05.003
  9. Kim JH, Kim YH, Jee G, Lee CS, Mesospheric temperature estimation from meteor decay times of weak and strong meteor trails, J. Atmos. Sol.-Terr. Phys. 89, 18-26 (2012). https://doi.org/10.1016/j.jastp.2012.07.003
  10. Song IS, Lee C, Kim JH, Jee G, Choi HJ, et al., Meteor radar observations of vertically propagating low-frequency inertia-gravity waves near the southern polar mesopause region, J. Geophys. Res. Space Phys. 122, 4777-4800 (2017). https://doi.org/10.1002/2016JA022978
  11. Lee C, Jee G, Kim JH, Song IS, Meteor echo ceiling effect and mesospheric temperature estimation from meteor radar observations, Ann. Geophys. 36, 1267-1274 (2018). https://doi.org/10.5194/angeo-36-1267-2018
  12. Choi JM, Kwak YS, Kim YH, Lee C, Kim JH, et al., Anisotropic diffusion of meteor trails due to the geomagnetic field over King Sejong Station (62.2°S, 58.8°W), Antarctica, Astrophys Space Sci, 363,111 (2018). https://doi.org/10.1007/s10509-018-3333-y
  13. Kam H, Kim YH, Mitchell NJ, Kim JH, Lee C, Evaluation of estimated mesospheric temperatures from 11-year meteor radar datasets of King Sejong Station (62°S, 59°W) and Esrange (68°N, 21°E), J. Atmos. Sol.-Terr. Phys. 196, 105148 (2019). https://doi.org/10.1016/j.jastp.2019.105148
  14. Lee W, Song IS, Kim JH, Kim YH, Jeong SH, et al., The observation and SD-WACCM simulation of planetary wave activity in the middle atmosphere during the 2019 southern hemispheric sudden stratospheric warming, J. Geophys. Res. Space Phys. 126, e2020 JA029094 (2021). https://doi.org/10.1029/2020JA029094
  15. Song BG, Song IS, Chun HY, Lee C, Kam H, et al., Activities of small-scale gravity waves in the upper mesosphere observed from meteor radar at King Sejong station, Antarctica (62.22°S, 58.78°W) and their potential sources, J. Geophys. Res. Atmos. 126, e2021 JD034528 (2021). https://doi.org/10.1029/2021JD034528
  16. Wu Q, Jee G, Lee C, Kim JH, Kim YH, et al., First simultaneous multi-station observations of the polar cap thermospheric winds, J. Geophys. Res. Space Phys. 122, 907-915 (2017). https://doi.org/10.1002/2016JA023560
  17. Lee C, Jee G, Wu Q, Shim JS, Murphy D, et al., Polar thermospheric winds and temperature observed by Fabry-Perot interferometer at Jang Bogo Station, Antarctica, J. Geophys. Res. Space Phys. 122, 9685-9695 (2017). https://doi.org/10.1002/2017JA024408
  18. Lee C, Jee G, Kam H, Wu Q, Ham YB, et al., A comparison of Fabry-Perot interferometer and meteor radar wind measurements near the polar mesopause region, J. Geophys. Res. Space Phys. 126, e2020JA028802 (2021). https://doi.org/10.1029/2020JA028802
  19. Kwon HJ, Lee C, Jee G, Ham YB, Kim JH, et al., Ground-based observations of the polar region space environment at the Jang Bogo Station, Antarctica, J. Astron. Space Sci. 35, 185-193 (2018). https://doi.org/10.5140/JASS.2018.35.3.185
  20. Ham YB, Jee G, Lee C, Kwon HJ, Kim JH, et al., Observations of the polar Ionosphere by the vertical incidence pulsed ionospheric radar at Jang Bogo Station, Antarctica, J. Astron. Space Sci. 37, 143-156 (2020). https://doi.org/10.5140/JASS.2020.37.2.143
  21. Kwak YS, Yang TY, Kil H, Phanikumar DV, Heo BH, et al., Characteristics of the E- and F-region field-aligned irregularities in middle latitudes: initial results obtained from the Daejeon 40.8 MHz VHF radar in South Korea, J. Astron. Space Sci. 31, 15-23 (2014). https://doi.org/10.5140/JASS.2014.31.1.15
  22. Yang TY, Kwak YS, Kil H, Lee YS, Lee WK, et al., Occurrence climatology of F region field-aligned irregularities in middle latitudes as observed by a 40.8 MHz coherent scatter radar in Daejeon, South Korea, J. Geophys. Res. Space Phys. 120, 10107-10115 (2015). https://doi.org/10.1002/2015JA021885
  23. Yang TY, Kwak YS, Lee J, Park J, Choi S, The first report on the afternoon e-region plasma density irregularities in middle latitude, J. Astron. Space Sci. 38, 135-143 (2021). https://doi.org/10.5140/JASS.2021.38.2.135
  24. Hong J, Chung JK, Kim YH, Park J, Kwon HJ, et al., Characteristics of ionospheric irregularities using GNSS scintillation indices measured at Jang Bogo Station, Antarctica (74.62°S, 164.22°E). Space Weather, 18, e2020SW002536 (2020). https://doi.org/10.1029/2020SW002536
  25. Lee YS, Kim YH, Kim KC, Kwak YS, Sergienko T, et al., EISCAT observation of wave-like fluctuations in vertical velocity of polar mesospheric summer echoes associated with a geomagnetic disturbance, J. Geophys. Res. Space Phys. 123, 5182-5194 (2018). https://doi.org/10.1029/2018JA025399
  26. Wu Q, Knipp D, Liu J, Wang W, Haggstrom I, et al., What do the new 2018 HIWIND thermospheric wind observations tell us about high-latitude ion-neutral coupling during daytime? J. Geophys. Res. Space Phys. 124, 6173-6181. https://doi.org/10.1029/2019JA026776
  27. Kim E, Jee G, Ji EY, Kim YH, Lee C, et al., Climatology of polar ionospheric density profile in comparison with mid-latitude ionosphere from long-term observations of incoherent scatter radars: a review, J. Atmos. Sol.-Terr. Phys. 211, 105449 (2020). https://doi.org/10.1016/j.jastp.2020.105449
  28. Kwon HJ, Kim KH, Jee G, Jin H, Kim H, Characteristics of Pc5 activity at high latitudes stations in Antarctica, J. Atmos. Sol.-Terr. Phys. 193, 105087 (2019). https://doi.org/10.1016/j.jastp.2019.105087
  29. Lee WK, Chung JK, Cho S, Park JU, Cho JH, et al., Retrieval of electron density profile for KOMPSAT-5 GPS radio occultation data processing system, J. Astron. Space Sci. 24, 297-308 (2007). https://doi.org/10.5140/JASS.2007.24.4.297
  30. Choi MS, Lee WK, Cho S, Park JU, Operation of the radio occultation in KOMPSAT-5, J. Astron. Space Sci. 27, 345-352 (2010). https://doi.org/10.5140/JASS.2010.27.4.345
  31. Choi BK, Kil H, Large ionospheric TEC depletion induced by the 2016 North Korea rocket, Adv. Space Res. 59, 532-541 (2017). https://doi.org/10.1016/j.asr.2016.09.012
  32. Choi BK, Yoon HS, Lee SJ, Combined GPS/GLONASS relative receiver DCB estimation using the LSQ method and ionospheric TEC changes over South Korea, J. Position. Navig. Timing. 7, 175-181 (2018). https://doi.org/10.11003/JPNT.2018.7.3.175
  33. Sessanga N, Kim YH, Choi BK, Chung JK, The 4D-var Estimation of North Korean rocket exhaust emissions into the ionosphere, J. Geophys. Res. Space Phys. 123, 2315-2326 (2018). https://doi.org/10.1002/2017JA024596
  34. Choi BK, Hong J, Observation of the fast-traveling ionospheric disturbances induced by the 2017 North Korean missile, Adv. Space Res. 63, 2598-2608 (2019). https://doi.org/10.1016/j.asr.2018.12.033
  35. Choi, BK, Sohn DH, Lee SJ, Correlation between Ionospheric TEC and the DCB Stability of GNSS Receivers from 2014 to 2016, Remote Sens. 11, 2657 (2019). https://doi.org/10.3390/rs11222657
  36. Choi BK, Lee WK, Sohn DH, Yoo SM, Roh KM et al., Ionospheric TEC monitoring over Jeju island using the Chinese Beidou satellite navigation system, J. Position. Navig. Timing. 9, 1-6 (2020). https://doi.org/10.11003/JPNT.2020.9.1.1