DOI QR코드

DOI QR Code

Basic Lunar Topography and Geology for Space Scientists

우주과학자에게 필요한 달의 지형과 지질

  • Kim, Yong Ha (Department of Astronomy, Space Science, Geology, Chungnam National University) ;
  • Choi, Sung Hi (Department of Astronomy, Space Science, Geology, Chungnam National University) ;
  • Yu, Yongjae (Department of Astronomy, Space Science, Geology, Chungnam National University) ;
  • Kim, Kyeong Ja (Korea Institute of Geoscience and Mineral Resources (KIGAM))
  • 김용하 (충남대학교 대학원 우주지질학과) ;
  • 최성희 (충남대학교 대학원 우주지질학과) ;
  • 유용재 (충남대학교 대학원 우주지질학과) ;
  • 김경자 (한국지질자원연구원)
  • Received : 2021.07.19
  • Accepted : 2021.08.16
  • Published : 2021.08.31

Abstract

Upon the human exploration era of the Moon, this paper introduces lunar topography and geologic fundamentals to space scientists. The origin of scientific terminology for the lunar topography was briefly summarized, and the extension of the current Korean terminology is suggested. Specifically, we suggest the most representative lunar topography that are useful to laymen as 1 ocean (Oceanus Procellarum), 10 maria (Mare Imbrium, Mare Serenitatis, Mare Tranuillitatis, Mare Nectaris, Mare Fecundatis, Mare Crisium, Mare Vaporium, Mare Cognitum, Mare Humorum, Mare Nubium), 6 great craters (Tyco, Copernicus, Kepler, Aristachus, Stebinus, Langrenus). We also suggest Korean terms for highland, maria, mountains, crater, rille, rima, graben, dome, lava tube, wrinkle ridge, trench, rupes, and regolith. In addition, we introduce the standard model for the lunar interior and typical rocks. According to the standard model on the basis of historical impact events, the lunar geological eras are classified as Pre-Nectarian, Nectarian, Imbrian, Erathostenesian, and Copernican in chronologic order. Finally, we summarize the latest discovery records on the water on the Moon, and introduce the concept of water extraction from the lunar soil, which is to be developed by the Korea Institute of Geoscience and Mineral Resources (KIGAM).

본 논문은 다가오는 달 유인 탐사시대를 대비하여 달의 지형 및 지질학적 기초 지식을 우주과학자들에게 소개한다. 달 지형 용어에 대한 학술적 기원을 간단히 정리하였으며, 현재 통용되는 한글 용어를 확장하여 새로운 지형 용어들을 제안하였다. 특히, 일반인도 꼭 알아야 할 대표적인 달의 지형으로 1 대양(폭풍의 대양), 10대 바다(비의 바다, 평온의 바다, 고요의 바다, 감로주의 바다, 풍요의 바다, 위난의 바다, 증기의 바다, 인식의 바다, 습기의 바다, 구름의 바다), 6대 충돌구(티코, 코페르니쿠스, 케플러, 아리스타쿠스, 스테비누스, 랑그레누스)를 제안한다. 달의 지형으로 고원(highland), 바다(maria), 산맥(mountains), 충돌구(crater), 함몰 용암굴/열구(rille, rima), 지구대(graben), 돔(dome), 용암동굴(lava tube), 주름 능선(wrinkle ridge), 참호(trench), 절벽(rupes), 그리고 달의 표면 흙을 표토(regolith)로 사용할 것을 제안한다. 또한, 달의 내부 구조 표준 모델과 대표적 암석을 소개하였다. 지구의 지질 시대구분은 발견 화석과 방사성 동위원소를 이용한 절대연령 측정을 기준으로 하는 반면, 표준적인 달의 지질 시대 구분은 대표적인 충돌구 형성을 기준으로 선-넥타리스 기(Pre-Nectarian), 넥타리스 기(Nectarian), 임브리움 기(Imbrian), 에라토스네스 기(Erathostenesian), 코페르니쿠스 기(Copernican)로 나뉜다. 마지막으로 인간의 달 활용에 획기적인 계기가 되는 최근의 달 표면 물 발견에 대한 내용을 정리하였으며, 향후 한국지질자원연구원에서 개발될 물 채취 장치의 개념도 소개하였다.

Keywords

Acknowledgement

본 연구는 한국우주과학회를 통한 한국천문연구원 학연사업(2020)의 지원을 받았음.

References

  1. Kopal Z, Mapping of the Moon, in An Introduction to the Study of the Moon, eds. Burton WB, Shore SN (Springer, Dordrecht, 1966), 4.
  2. Wood CA, Lunar hall of fame, Sky & Telescope (2017) [Internet], viewed 2020 Jul 27, available from: https://skyandtelescope.org
  3. Prinz M, Dowty E, Keil K, Bunch TE, Spinel troctolite and anorthosite in Apollo 16 samples, Science. 179, 74-76 (1973). https://doi.org/10.1126/science.179.4068.74
  4. Green DH, Ware NG, Hibberson WO, Major A, Experimental petrology of Apollo 12 basalts: part 1, sample 12009, Earth Planet. Sci. Lett. 13, 85-96 (1971). https://doi.org/10.1016/0012-821X(71)90109-9
  5. Barboni M, Boehnke P, Keller B, Kohl IE, Schoene B, et al., Early formation of the Moon 4.51 billion years ago. Sci. Adv. 3, e1602365 (2017). https://doi.org/10.1126/sciadv.1602365
  6. Hiesinger H, Head JW III, Wolf U, Jaumann R, Neukum G, Ages and stratigraphy of mare basalts in Oceanus Procellarum, Mare Nubium, Mare Cognitum, and Mare Insularum, J. Geophys. Res. 108, E7 (2003). https://doi.org/10.1029/2002JE001985
  7. Neukum G, Ivanov BA, Hartmann WK, Cratering records in the inner solar system in relation to the lunar reference system, Space Sci. Rev. 96, 55-86 (2001). https://doi.org/10.1023/A:1011989004263
  8. Brown P, Spalding RE, ReVelle DO, Tagliaferri E, Worden SP, The flux of small near-Earth objects colliding with the Earth, Nature. 420, 294-296 (2002). https://doi.org/10.1038/nature01238
  9. Gault DE, Wedekind JA, Experimental studies of oblique impact, Proceedings of the 9th Lunar and Planetary Conference, Houston, TX, 13-17 Mar 1978.
  10. Lunar LO, Impact Basin Geology (2019) [Internet], viewed 2021 July 10, available from: https://www.lpi.usra.edu/lunar/missions/orbiter/lunar_orbiter/impact_basin/
  11. Bussey DBJ, Spudis PD, Compositional analysis of the Orientale basin using full resolution Clementine data: some preliminary results, Geophys. Res. Lett. 24, 445-448 (1997). https://doi.org/10.1029/97GL00178
  12. Wikipedia, Geology of the Moon (2021) [Internet], viewed 2021 July 10, available from: https://en.wikipedia.org/wiki/Geology_of_the_Moon
  13. Lognonne P, Gagnepain-Beyneix J, Chenet H, A new seismic model of the Moon: implications for structure, thermal evolution and formation of the Moon, Earth Planet. Sci. Lett. 211, 27-44 (2003). https://doi.org/10.1016/S0012-821X(03)00172-9
  14. Garcia RF, Gagnepain-Beyneix J, Chevrot S, Lognonne P, Very preliminary reference Moon model, Phys. Earth Planet. Inter. 188, 96-113 (2011). https://doi.org/10.1016/j.pepi.2011.06.015
  15. Wieczorek MA, Neumann GA, Nimmo F, Kiefer WS, Taylor J, et al., The crust of the Moon as seen by GRAIL, Science. 339, 671-675 (2013). https://doi.org/10.1126/science.1231530
  16. Green J, Draper D, Boardsen S, Dong C, When the Moon had a magnetosphere, Sci. Adv. 6, eabc0865 (2020). https://doi.org/10.1126/sciadv.abc0865
  17. Mighani S, Wang H, Shuster DL, Borlina CS, Nichols CIO, et al., The end of the lunar dynamo, Sci. Adv. 6, eaax0883 (2020). https://doi.org/10.1126/sciadv.aax0883
  18. Wilhelms DE, Geologic history of the Moon, U.S. Geological Survey Professional Paper, 1348 (1987).
  19. Klotz I. New Moon, Sci. Am. 325, 18 (2021). https://doi.org/10.1038/scientificamerican0721-18b
  20. Normile D, China set to bring back rocks from the Moon, Science. 370, 900 (2020). https://doi.org/10.1126/science.370.6519.900
  21. Bowring SA, Williams IS, Priscoan (4.00-4.03 Ga) orthogneisses from northwestern Canada, Contrib. Mineral. Petrol. 134, 3-16 (1999). https://doi.org/10.1007/s004100050465
  22. Wilde SA, Valley JW, Peck WH, Graham CM, Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago, Nature. 409, 175-178 (2001). https://doi.org/10.1038/35051550
  23. Watson K, Murray BC, Brown H, The behavior of volatiles on the lunar surface, J. Geophys. Res. 66, 3033-3045 (1961). https://doi.org/10.1029/JZ066i009p03033
  24. Simpson RA, Tyler LG, Reanalysis of Clementine bistatic radar data from the lunar south pole, J. Geophys. Res. 104, 3845-3862 (1999). https://doi.org/10.1029/1998JE900038
  25. Feldman WC, Maurice S, Binder AB, Barraclough BL, Elphic RC, et al., Fluxes of fast and epithermal neutrons from lunar prospector: evidence for water ice at the lunar poles, Science. 281, 1496-1500 (1998). https://doi.org/10.1126/science.281.5382.1496
  26. Colaprete A, Schultz P, Heldmann J, Wooden D, Shirley M, et al., Detection of water in the LCROSS ejecta plume, Science. 330, 463-468 (2010). https://doi.org/10.1126/science.1186986
  27. Zuber MT, Head JW, Smith DE, Neumann GA, Mazarico E, et al., Constraints on the volatile distribution within Shackleton crater at the lunar south pole, Nature. 486, 378-381 (2012). https://doi.org/10.1038/nature11216
  28. Mitrofanov IG, Sanin AB, Litvak ML, Water in the Moon's polar areas: results of LEND neutron telescope mapping, Dokl. Phys. 61, 98-101 (2016). https://doi.org/10.1134/S1028335816020117
  29. Hauri EH, Weinreich T, Saal AE, Rutherford MC, Van Orman JA. High pre-eruptive water contents preserved in lunar melt inclusions, Science. 333, 213-215 (2011). https://doi.org/10.1126/science.1204626
  30. Benna M, Hurley DM, Stubbs TJ, Mahaffy PR, Elphic RC, Lunar soil hydration constrained by exospheric water liberated by meteoroid impacts, Nat. Geosci. 12, 333-338 (2019). https://doi.org/10.1038/s41561-019-0345-3
  31. Chang K, There's water and ice on the Moon, and in more places than NASA thought: future astronauts seeking water on the Moon may not need to go into the most treacherous craters in its polar regions to find it, The New York Times (2020) [Internet] , viewed 2021 Oct 26, available from: https://www.nytimes.com/2020/10/26/science/moon-ice-water. html
  32. Honniball CI, Lucey PG, Li S, Shenoy S, Orlando TM, et al., Molecular water detected on the sunlit Moon by SOFIA, Nat. Astron. 5, 121-127 (2020). https://doi.org/10.1038/s41550-020-01222-x
  33. Teodoro LFA, Eke VR, Elphic RC, Feldman WC, Lawrence DJ, How well do we know the polar hydrogen distribution on the Moon? J. Geophys. Res. 119, 574-593 (2014). https://doi.org/10.1002/2013JE004421
  34. Kim KJ, Discovery of water on the moon and its significance of the distribution of water with respect to lunar in-situ resource utilization. KSCE Mag. 69, 14-23 (2021). https://doi.org/10.7233/ijcf.2021.21.1.014
  35. Kim KJ, Introduction to lunar oxygen distribution and its extraction technology. Korean J. Mineral. Petrol. 34, 83-93 (2021). https://doi.org/10.22807/KJMP.2021.34.1.83
  36. Kim KJ, Planning study on technology development of oxygen resource extraction and utilization at lunar surface by KIGAM-National Institute Cooperation for Participation in International ISRU Program, KIGAM Report, JP2020-004-2021(1) (2021).