Acknowledgement
Authors would like to offer their most sincere gratitude to Mr. Behtash Javidsharifi for reviewing the manuscript and giving very valuable comments.
References
- ABAQUS. (2009), "Analysis user's manual version 6.9", ABAQUS Inc.
- Amadio, C., Bedon, C., Fasan, M. and Pecce, M.R. (2017), "Refined numerical modelling for the structural assessment of steel-concrete composite beam-to-column joints under seismic loads", Eng. Struct., 138, 394-409. https://doi.org/10.1016/j.engstruct.2017.02.037.
- Amiri, S., Saffari, H. and Mashhadi, J. (2018), "Assessment of dynamic increase factor for progressive collapse analysis of RC structures", Eng. Fail. Anal., 84, 300-10. https://doi.org/10.1016/j.engfailanal.2017.11.011.
- Astaneh-Asl, A., Jones, B. and Zhao, Y. (2001), "Progressive Collapse Resistance of Steel Building Floors", Report No. UCB/CEE-Steel-2001/03; University of California, Department of Civil and Environmental Engineering, Berkeley, USA.
- Burgess, I. (2018), "Connection behaviour and the robustness of steel-framed structures in fire", MATEC Web of Conferences, 149, 01008, EDP Sciences.
- Dai, X.H., Wang, Y.C. and Bailey, C.G. (2010), "Numerical modelling of structural fire behaviour of restrained steel beam- column assemblies using typical joint types", Eng. Struct., 32, 2337-2351. https://doi.org/10.1016/J.ENGSTRUCT.2010.04.009.
- Demonceau, J.F. (2008), "Steel and composite frames: sway response under conventional loading and development of membrane effects in beams further to an exceptional action", Ph.D. Dissertation, University of Liege, Liege, Belgium.
- DOD (2010), Design of buildings to resist progressive collapse, Unified Facilities Criteria (UFC) 4-023-03, Department of Defense (DoD); Washington Dc, USA.
- Elkoly, S. and El-Ariss B. (2014), "Progressive collapse evaluation of externally mitigated reinforced concrete beams", Eng. Fail. Anal., 40, 33-47. https://doi.org/10.1016/j.engfailanal.2014.02.002.
- Ellingwood, B.R., Smilowitz, R., Dusenberry, D.O., Duthinh, D., Lew, H.S. and Carino, N.J. (2007), "Best Practices for Reducing the Potential for Progressive Collapse in Buildings", Report No. 7396; National Institute of Standards and Technology (NIST TN), Gaithersburg, MD, USA.
- GSA (2003), Progressive collapse analysis and design guidelines for new federal office buildings and major modernization projects, U.S. General Services Administration (GSA); Washington Dc, USA.
- Guo, L., Gao, S. and Fu, F. (2015), "Structural performance of semi-rigid composite frame under column loss", Eng. Struct., 95, 112-126. https://doi.org/10.1016/J.ENGSTRUCT.2015.03.049.
- Guo, L., Gao, S., Fu, F. and Wang, Y. (2013), "Experimental study and numerical analysis of progressive collapse resistance of composite frames", J. Constr. Steel Res., 89, 236-251. https://doi.org/10.1016/J.JCSR.2013.07.006.
- Hadianfard, M.A., Eskandari, F. and JavidSharifi, B. (2018), "The effects of beam-column connections on behavior of buckling-restrained braced frames", Steel Compos. Struct., 28(3), 309-318. https://doi.org/10.12989/scs.2018.28.3.309.
- Hadianfard, M.A. and Namjoo, M. (2017), "Numerical investigation of the behaviour of bolted and welded top and seat angle connection in progressive collapse of steel structures", J. Struct. Constr. Eng. (JSCE). https://doi.org/10.22065/JSCE.2017.98340.1322.
- Hadianfard, M.A. and Rahnema, H. (2010), "Effects of RHS face deformation on the rigidity of beam-column connection", Steel Compos. Struct., 10(6), 491-502.
- Hadianfard, M.A., and Shekari, M. (2019), "An Equivalent Single-Degree-of-Freedom System to Estimate Nonlinear Response of Semi-fixed Flexural Members Under Impact Load", Iran J. Science and Technology, Transactions of Civil Engineering, 43(1), 343-355. https://doi.org/10.1007/s40996-018-0169-1
- Hoffman, S.T. and Fahnestock, L.A. (2011), "Behavior of multistory steel buildings under dynamic column loss scenarios", Steel Compos. Struct., 11(2), 149-168. https://doi.org/10.12989/scs.2011.11.2.149.
- Hu, Y., Davison, J. B., Burgess, I. and Plank, R. (2008), "Experimental study on flexible end plate connections in fire", Proceedings of the 5th European conference on steel structures, Graz, Austria.
- Izzuddin, B.A., Vlassis, A.G., Elghazouli, A.Y. and Nethercot, D.A. (2008), "Progressive collapse of multi-storey buildings due to sudden column loss - Part I: Simplified assessment framework", Eng. Struct., 30, 1308-1318. https://doi.org/10.1016/J.ENGSTRUCT.2007.07.011.
- Karns, J.E., Houghton, D.L., Hong, J.K. and Kim, J. (2009), "Behavior of Varied Steel Frame Connection Types Subjected to Air Blast, Debris Impact, and/or Post-Blast Progressive Collapse Load Conditions", Proceedings of the Structures Congress 2009, Austin, Texas, United States, April 30-May 2. https://doi.org/10.1061/41031(341)207.
- Khaloo, A. and Omidi, H. (2018), "Evaluation of vierendeel peripheral frame as supporting structural element for prevention of progressive collapse", Steel Compos. Struct., 26(5), 549-556. https://doi.org/10.12989/scs.2018.26.5.549.
- Khandelwal, K. and El-Tawil, S. (2007), "Collapse Behavior of Steel Special Moment Resisting Frame Connections", J. Struct. Eng., 133, 646-655. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:5(646).
- Kim, J. and An, D. (2009), "Evaluation of progressive collapse potential of steel moment frames considering catenary action. Struct", Des. Tall Spec. Build., 18, 455-465. https://doi.org/10.1002/tal.448.
- Kim, T. and Kim, J. (2009a), "Collapse analysis of steel moment frames with various seismic connections", J. Constr.Steel Res., 65(6), 1316-1322. https://doi.org/10.1016/j.jcsr.2008.11.006.
- Kim, T. and Kim, J. (2009b), "Progressive collapse-resisting capacity of steel moment frames considering panel zone deformation", Adv. Struct. Eng., 12(2), 231-240. https://doi.org/10.1260%2F136943309788251687. https://doi.org/10.1260%2F136943309788251687
- Kishi, N., Ahmed, A., Yabuki, N. and Chen, W.F. (2001), "Nonlinear finite element analysis of top-and seat-angle with double web-angle connections", Struct. Eng. Mech., 12(2), 201-214. https://doi.org/10.12989/sem.2001.12.2.201.
- Lee, C.H., Kim, S., Han, K.H. and Lee, K. (2009), "Simplified nonlinear progressive collapse analysis of welded steel moment frames", J. Constr. Steel Res., 65, 1130-1137. https://doi.org/10.1016/j.jcsr.2008.10.008.
- Li, L., Wang, W., Chen, Y. and Lu, Y. (2015), "Effect of beam web bolt arrangement on catenary behaviour of moment connections", J. Constr. Steel Res., 104, 22-36. https://doi.org/10.1016/j.jcsr.2014.09.016.
- Li, L., Wang, W., Chen, Y. and Lu, Y. (2013), "Experimental investigation of beam-to-tubular column moment connections under column removal scenario", J. Constr. Steel Res., 88, 244-55. https://doi.org/10.1016/j.jcsr.2013.05.017.
- Li, S., Shan, S., Zhai, C. and Xie, L. (2016), "Experimental and numerical study on progressive collapse process of RC frames with full-height infill walls", Eng. Fail. Anal., 59, 57-68. https://doi.org/10.1016/j.engfailanal.2015.11.020.
- Liu, C., Fung, T.C. and Tan, K.H. (2016), "Dynamic Performance of Flush End-Plate Beam-Column Connections and Design Applications in Progressive Collapse", J. Struct. Eng., 142, 4015074. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001329.
- Liu, C., Tan, K.H. and Fung, T.C. (2013), "Dynamic behaviour of web cleat connections subjected to sudden column removal scenario", J. Constr. Steel Res., 86, 92-106. https://doi.org/10.1016/j.jcsr.2013.03.020.
- Mirtaheri, M., Emami, F., Zoghi, M.A. and Salkhordeh, M. (2019), "Mitigation of progressive collapse in steel structures using a new passive connection", Struct. Eng. Mech., 70(4), 381-394. https://doi.org/10.12989/sem.2019.70.4.381.
- Mirtaheri, M., and Zoghi, M.A. (2016), "Design guides to resist progressive collapse for steel structures", Steel Compos. Struct., 20(2), 357-378. https://doi.org/10.12989/scs.2016.20.2.357.
- Momeni, M., Hadianfard, M.A., Bedon, C. and Baghlani, A. (2019, August), "Numerical damage evaluation assessment of blast loaded steel columns with similar section properties", Structures, 20, 189-203. https://doi.org/10.1016/j.istruc.2019.04.002
- Momeni, M., Hadianfard, M.A., Bedon, C. and Baghlani, A. (2020), "Damage evaluation of H-section steel columns under impulsive blast loads via gene expression programming", Eng. Struct., 219, 110909. https://doi.org/10.1016/j.engstruct.2020.110909
- Rezvani, F.H. and Asgarian, B. (2012), "Element loss analysis of concentrically braced frames considering structural performance criteria", Steel Compos. Struct., 12(3), 231-248. https://doi.org/10.12989/scs.2012.12.3.231.
- Rezvani, F.H., Jeffers, A.E., Asgarian, B. and Ronagh, H.R. (2017), "Effect of column loss location on structural response of a generic steel moment resisting frame", Steel Compos. Struct., 25(2), 217-229. https://doi.org/10.12989/scs.2017.25.2.217.
- Sadek, F., Main, J.A., Lew, H.S., Robert, S.D., Chiarito, V. and El-Tawil, S. (2011), "An Experimental and Computational Study of Steel Moment Connections under a Column Removal Scenario", Report No. 1669 rev2; National Institute of Standards and Technology (NIST TN), Gaithersburg, MD, USA.
- Satheeskumar, N. and Davison, J.B. (2014), "Robustness of steel joints with stainless steel bolts in fire", Int. J. Adv. Struct. Eng. (IJASE), 6(4), 161-168. https://doi.org/10.1007/s40091-014-0075-0
- Sasani, M., Bazan, M. and Sagiroglu, S. (2007), "Experimental and Analytical Progressive Collapse Evaluation of Actual Reinforced Concrete Structure", ACI Struct. J., 104, 731-739. https://doi.org/10.14359/18955.
- Sharbati, R., Hayati, Y. and Hadianfard, M.A. (2019), "Numerical Investigation on the Cyclic Behavior of Post-tensioned Steel Moment Connections with Bolted Angles", Int. J. Steel Struct., 19(6), 1840-1853. https://doi.org/10.1007/s13296-019-00247-x
- Tartaglia, R., D'Aniello, M., Zimbru, M. and Landolfo, R. (2018), "Finite element simulations on the ultimate response of extended stiffened end-plate joints", Steel Compos. Struct., 27(6), 727-745. https://doi.org/10.12989/scs.2018.27.6.727.
- Tavakoli, H.R. and Afrapoli, M.M. (2018), "Robustness analysis of steel structures with various lateral load resisting systems under the seismic progressive collapse", Eng. Fail. Anal., 83, 88-101. https://doi.org/10.1016/j.engfailanal.2017.10.003.
- Tavakoli, H.R. and Hasani, A.H. (2017), "Effect of Earthquake characteristics on seismic progressive collapse potential in steel moment resisting frame", Earthq. Struct, 12, 529-541. https://doi.org/10.12989/eas.2017.12.5.529.
- Vlassis, A.G., Izzuddin, B.A., Elghazouli, A.Y. and Nethercot, D.A. (2008), "Progressive collapse of multi-storey buildings due to sudden column loss-Part II: Application", Eng. Struct., 30, 1424-1438. https://doi.org/10.1016/J.ENGSTRUCT.2007.08.011.
- Wang, Y.C., Dai, X.H. and Bailey, C.G. (2011), "An experimental study of relative structural fire behaviour and robustness of different types of steel joint in restrained steel frames", J. Constr. Steel Res., 67, 1149-1163. https://doi.org/10.1016/J.JCSR.2011.02.008.
- Wang, M. and Wang, P. (2013), "Strategies to increase the robustness of endplate beam-column connections in fire", J. Constr. Steel Res., 80, 109-120. https://doi.org/10.1016/j.jcsr.2012.09.017
- Yang, B. and Tan, K.H. (2014), "Behavior of Composite Beam-Column Joints in a Middle-Column-Removal Scenario: Experimental Tests", J. Struct. Eng., 140(2), 04013045. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000805.
- Yang, B. and Tan, K.H. (2013), "Experimental tests of different types of bolted steel beam-column joints under a central-column-removal scenario", Eng. Struct., 54, 112-130. https://doi.org/10.1016/j.engstruct.2013.03.037.
- Yang, B. and Tan, K.H. (2012), "Numerical analyses of steel beam-column joints subjected to catenary action", J. Constr. Steel Res., 70, 1-11. https://doi.org/10.1016/j.jcsr.2011.10.007.
- Yu, H., Burgess, I.W., Davison, J.B. and Plank, R.J. (2009a), "Experimental investigation of the behaviour of fin plate connections in fire", J. Constr. Steel Res., 65, 723-736. https://doi.org/10.1016/J.JCSR.2008.02.015.
- Yu, H., Burgess, I.W., Davison, J.B. and Plank, R.J. (2009b), "Tying capacity of web cleat connections in fire, Part 1: Test and finite element simulation", Eng. Struct., 31, 651-663. https://doi.org/10.1016/J.ENGSTRUCT.2008.11.005.
- Yu, H., Burgess, I.W., Davison, J.B. and Plank, R.J. (2009c), "Tying capacity of web cleat connections in fire, Part 2: Development of component-based model", Eng. Struct., 31, 697-708. https://doi.org/10.1016/J.ENGSTRUCT.2008.11.006.